

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Seventh Semester - Regular) Examinations, November - 2022

BPECV7031- Structural Analysis II

(Civil Engineering)

I 1m	e: 3 nrs				num: /0	Marks
			Answer ALL	_		
DAI	ЭΤ Α.	The figures in ((Multiple Choice Questions)	the right hand	margin indicate marks.	10 = 10 N	Morks)
IAI	XI – A.	(Multiple Choice Questions)		(1 X :		
Q .1		ver ALL questions			[CO#]	[PO#]
a.	The re	lative stiffness of a member at a	i joint, whose	far end is hinged	CO1	PO2
	(i)	0	(ii)	I/2L		
	(iii)	I/L	(iv)	3I/4L		
b.	When the far end is fixed, what will be the carry over moment (COM) if the applied moment is M?			CO1	PO2	
	(i)	0	(ii)	M/2		
	(iii)	2M	(iv)	M		
c.	When the far end is hinged, what will be the carry over factor (COF) if the applied moment is M?				CO1	PO2
	(i)	0	(ii)	0.5		
	(iii)	2	(iv)	1		
d.	For a cantilever supported beam, what will be the carry over factor (COF) if the applied moment is M?				CO1	PO2
	(i)	0	(ii)	1		
	(iii)	-1	(iv)	0.5		
e.	When the far end is fixed, the stiffness factor (K) is				CO2	PO2
	(i)	4EI/L	(ii)	3EI/L		
	(iii)	2EI/L	(iv)	2EI/L		
f.	The magnitude of fixed end moment for a span if one of the support sinks by δ is				CO2	PO2
	(i)	$3EI \delta/L^2$	(ii)	6ΕΙ δ/L ²		
	(iii)	$12EI \delta/L^2$	(iv)	$EI \delta/L^2$		
g.	A two-hinged semi-circular arch of radius R carries a concentrated load W at the crown. The horizontal thrust at each support is				CO3	PO2
	(i)	W/π	(ii)	$W/8\pi$		
	(iii)	$2W/\pi$	(iv)	0		
h.	A two-hinged parabolic arch carries a concentrated load W at the crown. The horizontal thrust at each support is				CO3	PO2
	(v)	25Wl/128h	(vi)	5Wl/128h		
	(vii)	Wl/128h	(viii)	10Wl/128h		
i.	In the analysis of structures by plastic theory, the following conditions must be satisfied				CO4	PO1
	(i)	Equilibrium condition	(ii)	Mechanism condition		
	(iii)	Yield condition	(iv)	All of the above		
j.	A fixed beam of length L is subjected to concentrated load W at mid-span, the collapse load is				CO4	PO2
	(i)	$6M_p/L$	(ii)	$8M_p/L$		
	(iii)	$4M_p/L$	(iv)	$2M_p/L$		

PART – B: (Short Answer Questions)

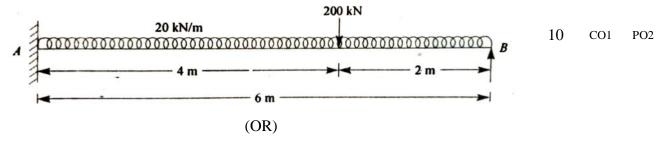
 $(2 \times 10 = 20 \text{ Marks})$

Q.2. Answer ALL questions			[PO#]
a.	Differentiate determinate and indeterminate structure.	CO1	PO1
b.	Define Shape factor.	CO4	PO1
c.	What is the shape factor of a triangular section and diamond section?	CO4	PO2
d.	Explain the terms carry over moment and carry over factor.	CO1	PO1
e.	Explain equilibrium equation.	CO1	PO1
f.	State Castigliano's first and second theorem.	CO2	PO1
g.	Define influence line diagram.	CO2	PO1
h.	Write the difference between elastic and plastic analysis.	CO4	PO2
i.	Draw BMD and SFD of simply supported beam carrying an uniformly distributed load.	CO1	PO2
j.	Write the horizontal thrust of a two hinged semi-circular arch of radius R carrying a	CO3	PO2

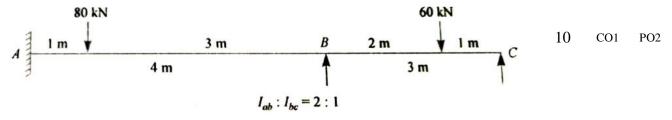
PART – C: (Long Answer Questions)

 $(10 \times 4 = 40 \text{ Marks})$

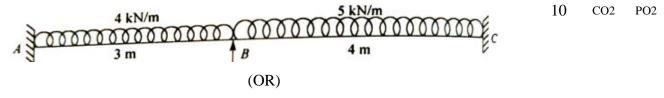
CO3

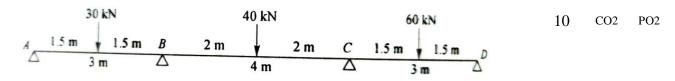

PO₂

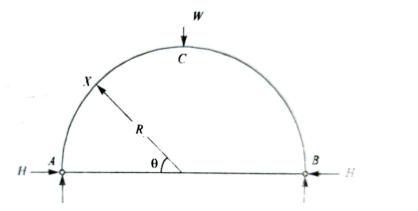
Answer ALL questions

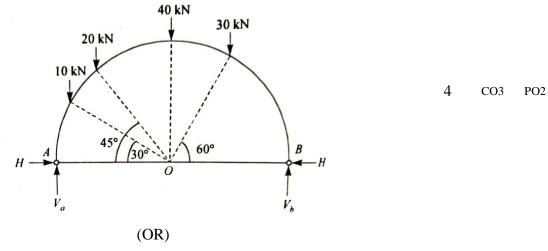

Marks [CO#] [PO#]

3.a. Find the support moments and draw the B.M diagram using moment distribution method.


uniformly distributed load w per unit run over the whole span.


b. Find the support moments and draw the B.M diagram using moment distribution method.


4.a. Find the support moments and draw the B.M diagram using slope deflection method.


b. Find the support moments and draw the B.M diagram using slope deflection method.

5. a. Find the horizontal thrust of the two-hinged semi-circular arch. Assume uniform flexural rigidity.

b. Find the horizontal thrust of the two-hinged semi-circular arch shown below.

- c. A two-hinged parabolic arch of span l and rise h carries a uniformly distributed load of w per unit run over the whole span. Find the horizontal thrust at each support.
- 5 CO3 PO2

CO3

PO2

- d. A two-hinged parabolic arch of span *l* and rise *h* carries a concentrated load of *w* at the crown. Find the horizontal thrust at each support.
- 5 CO3 PO2

- 6. a. Determine the shape factor of the following sections.
 - i. Rectangular section

10 CO4 PO2

ii. Circular section

(OR)

b. Determine the collapse load in the simply supported beam subjected to a point load in the centre using

10 CO4 PO2

- i. Static Method
- ii. Kinematic method

--- End of Paper ---