QPC: RN19BTECH585

AR 19

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Seventh Semester - Regular) Examinations, November - 2022

BPECS7011 / BPECT7011 - STATISTICAL MACHINE LEARNING

(CSE & CST)

Tim	e: 3 hrs			(COL & COI)	Iaximu	m: 70 l	Marks				
		Answe	er ALL	Questions							
DAI	The figures in the right-hand margin indicate marks. PART – A: (Multiple Choice Questions) $(1 \times 10 = 10 \text{ Marks})$										
PAI	X1 – A: ((Multiple Choice Questions)			(1 X 10	= 10 N	iarks)				
Q.1	. Answe	er ALL questions				[CO#]	[PO#]				
a.	The k-1	means algorithm is a				3	4				
	(i)	Supervised learning algorithm	(ii)	Unsupervised learning algorithm	m						
	(iii)	Semi-supervised learning algorithm	(iv)	Weakly supervised learning algorithm							
b.	When t	the number of features increase				2	2				
	(i)	Computation time increases	(ii)	Model becomes complex							
	(iii)	Learning accuracy decreases	(iv)	All of the above							
c.	We can	define this probability as $p(A B) = p$	(A,B)/p	p(B) if $p(B) > 0$		3	3				
	(i)	Conditional probability	(ii)	Marginal probability							
	(iii)	Bayes probability	(iv)	Normal probability							
d.	Predict	ing whether a tumour is malignant or	benign	is an example of?		3					
	(i)	Unsupervised Learning	(ii)	Supervised Regression Problem	1						
	(iii)	Supervised Classification Problem	(iv)	Categorical Attribute							
e.		machine learning models are traines and feedback they receive for their			n the	1	4				
	(i)	Supervised	(ii)	Unsupervised							
	(iii)	Reinforcement	(iv)	All the above							
f.	What i	is the most significant phase in a gene	etic algo	orithm?		4	4				
	(i)	Selection	(ii)	Mutation							
	(iii)	Crossover	(iv)	Fitness function							
g.	A featu	re F1 can take certain value: A, B, C	, D, E,	&		4	2				
	F and r	epresents grade of students from a co	llege. F	Here							
	feature	type is									
	A featu	re F1 can take certain value: A, B, C	, D, E,	&							
	F and r	epresents grade of students from a co	llege. F	Here							
	feature	type is									
	A featu	re F1 can take certain value: A, B, C	, D, E,	&							
	F and r	epresents grade of students from a co	llege. F	Here							
	feature	type is									
	Which	of the following is true about SVM?									
	(i)	It is useful only in high-	(ii)	It requires less memory							
	(iii)	dimensional spaces SVM does not perform well when we have a large data set	(iv)	SVM performs well when we hall	ave a						

h.	_	_	ion is a outcon		regressio	n technique that is	used to model d	ata	3	2
	(i)		Binary	ic .	(ii)	Linear, nume	eric			
	` '	on-linear			(v)	Non-linear ,nume				
i.	When	you find i	-	data, which	` ′	ollowing options w		er	3	4
	in kNN (i)		e the value of l	7	(;;)	Dogrades the vel	ua of la			
	(iii)		loes not depend		(ii)	Decrease the value $k = 0$	ue of K			
i	` /		erpreted as lea		(iv)				2	2
J.	(i)		are regulariz	-	(ii)	weights are regu	larized with the	12	2	2
	(iii)		tion algorithm	is simpler	(iv)	None of these				
PAI	RT – B:	(Short A	answer Questi	ons)			(2 x	x 10 =	20 M	Iarks)
<u>Q.2</u>	. Answe	r <i>ALL</i> que	<u>estions</u>					[C	O#]	[PO#]
a.	Explain	n the diffe	erence between	n bias and va	riance tr	ade-offs,		1		2
b.	Outline	e the role	of Grid search	n in Machine	Learnin	ıg?		1		1
c.	Define	F-Test w	rith a suitable o	example				2		2
d.	When t	to stop tu	ning machine	learning mod	lels.			1		2
e.	How st	ochastic	gradient desce	nt works?				4		3
f.	inform final 90 useful	ative abo 00 feature features a	ut class. Anothes are not informare, and the feature.	er 50 feature mative. Assu- ture selection	s are dire me there n method	00 features total. 50 ect copies of the fire is enough data to reds are using good the total are filtering?	st 50 features. The eliably assess ho	ne		3
		•		•		rmation filtering?				
g.		et the stat	ares will be sel tement "To im	•		es Text classifier us	sing Laplace	3		2
h.	What d	lo you me	ean by the curs	e of dimensi	onality i	n machine learning	?	3		2
i.	Write o	down the	steps in machi	ne learning r	nodel de	evelopment and dep	oloyment	1		6
j.	What is	s ANOV	A? Explain					2		2
PAI	RT – C:	(Long A	nswer Questi	ons)			(10	x 4 =	40 M	larks)
Ans	swer AL	L question	<u>ıs</u>				N	Marks	[CO#	[PO#]
3. a	error		ted in a line			r-mentioned datase I? Explain briefly		5	2	3
		X	2	4	6	8	3			
		Y	3	5	7	4	2			
ł	o. Writ	e short no	ote on: (i) F-7	Test and (ii) (O	-	uare test and goodn	ess of fit .	5	2	2

c.	Find the	regression	line of	Y	on X	and	vice	versa
----	----------	------------	---------	---	------	-----	------	-------

X	1	3	4	8	9	11	14
Y	1	2	4	5	7	8	9

d. Find the coefficient correlation for the following data

2	X	14	16	17	18	19	20	21	23	23
7	Y	84	78	70	75	66	67	62	58	60

- 4. a. Exemplifying briefly the about Ridge and Lass regression. How do you calculate
 - 3 2 5 the penalty? 5 3 2

2

3

3

5

5

5

2

2

2

3

b. Explain briefly the Random Forest algorithm with a suitable example

(OR)

- c. Compare Classification with a regression with an example.
- 5 3 d. Why is Random forest is better than logistic regression? Explain briefly 3
- 5. a. List and explain the various activation functions. Also, explain their suitability 3 4 2 with respect to applications.
 - b. Apply the K-NN classification algorithm of the below dataset and predict the type 3 3 7 of fruit or Food type to which Tomato(sweet =6, crunch=4)

Ingredients	Sweet	chrunch	Food type
Grape	8	5	FRUIT
Green bean	3	7	Vegetable
Nuts	3	6	Protein
Orange	7	3	FRUIT

(OR)

c. Explain briefly about the K-NN algorithm and generate the 3 neighbours of the following

Dataset. Check the class label of (Customer=>' JOHN', AGE=>37,#Credit card=2 and Class=?)

Customer	Age	Income	No. of credit cards	Class
George	35	35K	3	No
Meorge	22	50K	2	Yes
Keorge	63	200k	1	No
Leorge	59	59	170k	No
				?

d.	Explain briefly the Naive Bayes classifier with a suitable example of the mobile dataset.	5	3	4
	I like this mobile			
	It's a good mobile working nicely like it			
	Reading on the mobile is bad But works good. Overall nice			
	Nice looking but working slow			
	Overall mobile is bad			
6. a.	State the mathematical formulation of the SVM problem. Give an outline of	5	4	
	the method for solving the problem.			
b.	Compare Feature Extraction and Feature Selection techniques. Explain how	5	3	
	dimensionality can be reduced using a subset selection procedure.			
	(OR)			
c.	Summarizing the concept of back-propagation algorithm	3	4	2
d.	To assess the significance of possible variations in performance in a certain test between the convent schools of a city, a common test was given to a number of students taken at random from the fifth class of the 3 schools, and results were given below	7	3	5

A	В	С
9	13	14
11	12	13
13	10	17
9	5	17
8	5	9

Apply one-way ANOVA to analyze the variance of the given data

--- End of Paper ---