	_						
OP Code: RD21MSC073	Dan						A T
QP Code: RD21MSC073	Reg.						Ar
•	U						

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Third Semester) Examinations, December - 2022

20PHPE302 – Electronics

(Physics)

Time: 3 hrs Maximum: 70 Marks

1 111	ie. 5 iiis	Maxi	mum: /	J WIAIKS		
	(The figures in the right hand margin marks.)					
PART – A			$(2 \times 10 = 20 \text{ Marks})$			
Q1.	Answer ALL questions		CO#	Blooms Level		
a.	Write dimension of h ₁₁ ,h ₁₂ ,h ₂₁ and h ₂₂		1	\mathbf{K}_1		
b.	Write the difference between positive feedback and negative feedback		1	\mathbf{K}_1		
c.	Determine the trans conductance of a JFET if its amplification factor is 96 and resistance is 32 K Ω .	drain	1	K_1		
d.	How is Thevenins theorem different from Norton's theorem		1	\mathbf{K}_1		
e.	Explain ohmic region, pinchoff region and avalance region of JFET		2	\mathbf{K}_1		
f.	What is cascading amplifier		2	K_2		
g.	For the non-inverting amplifier given that input voltage is 5V and R1=1K Ω and 5K Ω . Calculate the output voltage.	Rf =	2	\mathbf{K}_1		
h.	Define common-mode rejection ratio (CMRR) and explain the significance of a		3	K_2		
	relatively large value of CMRR.					
i.	Derive the Boolean expression for the logic circuit shown below:		3	\mathbf{K}_1		
	A D D D D D D D D D D D D D D D D D D D					
j.	Write the truth table of jk-Flip flop		3	\mathbf{K}_1		

PART – B	$(10 \times 5 = 50 \text{ Marks})$

Answer ANY FIVE questions				Blooms Level
2. a.	Explain frequence response of RC coupled amplifier at low frequence range	5	1	\mathbf{K}_1
b.	Explain H Parameters in CB, CE and CC Hybrid model of Transistor	5	1	\mathbf{K}_1
3.a.	Explain Depletion Mode of MOSFET, Write I-V characteristic of MOSFET.	5	2	\mathbf{K}_1
b.	Explain construction and working principle of FET?	5	2	K_2
4. a.	With the neat circuit diagram explain the working of Wien bridge oscillator.	5	2	\mathbf{K}_1
b.	Explain the characteristic of negative feedback and effect of negative feedback on input impedance and output impedance	5	2	\mathbf{K}_2
5.a.	Draw the neat-labeled diagram for dual input, balanced output.	5	3	K1
b.	With the neat circuit diagram explain AC signal analysis	5	2	\mathbf{K}_2
6. a.	Explain the operation of an op-amp as i) adder ii) subtractor	5	3	\mathbf{K}_1

- b. Determine the amount of current from point $\overline{\mathbf{A}}$ to point $\overline{\mathbf{B}}$ in this circuit, and also the output voltage of the operational amplifier:
- 5 3

7.a. State and explain Thevenins theorem

 $5 2 K_1$

 \mathbf{K}_2

b. Calculate the current through the resistor of resistance 6 Ω using Thevenins 5 3 K₂ theorem.

8. a. Construct All Gates with the help of NOR Gate

5 3 K₁

b. Explain TTL,RTL and DTL

5 3 K₁

--- End of Paper ---