No

AR 21

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Third Semester) Examinations, December - 2022

20MTCBOE308 - OPTIMIZATION TECHNIQUES

(Mathematics)

Time: 3 hrs Maximum: 70 Marks (The figures in the right hand margin indicate marks.)

PART – A $(2 \times 10 = 20 \text{ Marks})$		
Q.1. Answer ALL Questions	CO#	Blooms
		Level
a. Define Quadratic Programming Problem with an example.	1	1
b. What is Branch and Bound Method?	2	2
c. What is Basic feasible solution?	1	1
d. Write Kuhn Tucker sufficient condition for non-linear programming.	3	1
e. Explain shortest route problem with an example.	4	2
f. Consider the function $f(x) = x_1 + 2x_2 + x_1x_2 - x_1^2 - x_2^2$.	4	3
Determine the maximum and minimum point of the function.		
g. Define Service process or Mechanism.	4	1
h. Define Queuing Discipline.	4	1
i. Obtain the necessary conditions for the optimum solution of the following pro	blem. 1	3
Minimize $f(x_1, x_2) = 3e^{2x_1+1} + 2e^{x_2+5}$		
Subject to the constraint $g(x_1, x_2) = x_1 + x_2 - 7 = 0$ and $x_1, x_2 \ge 0$.		
j. Define reneging and jockeying.	4	1
$PART - B ag{10 x 5} = 50 Marks)$		Marks)
Answer ANY FIVE questions	Marks	CO# Blooms
		Level

2. a. Solve the following LP problem by using **Big-M method**

10 1 3

Maximize Z = 20X1 + 80X2

Subject to

 $4X1 + 6X2 \le 90$

 $8X1 + 6X2 \le 100$

 $5X1 + 4X2 \le 80$

 $X1, X2 \ge 0$

3.a. Solve the non-linear programming problem by using Lagrange's multiplier 10 2 3 method

> Maximize $Z = 5X_1 - 3X_1^2 + 6X_2 - 2X_2^2$ Subject to 2X1 + 3X2 = 12

4. a. Solve the following LPP using dual simplex method

3 10 1

Minimized Z = X1 + 2X2+3X3Subject to $2X1 - X2+X3 \ge 4$ $X1 + X2+2X3 \le 8$ $X2 - X3 \ge 2$

 $X1, X2 \text{ and } X3 \ge 0$

5.a. Write the algorithm of Dual simplex method.

10 2 2

6. a. Use Beale's method for solving the quadratic programing problem

10 3 3

$$Max Z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

Subject to:

$$x_1 + 2x_2 \le 2$$
 and

$$x_1, x_2 \ge 0.$$

- 7.a. Find the optimum solution of the following constrained multivariable problem.
- 3

3

10

Minimize
$$Z = x_1^2 + (x_2 + 1)^2 + (x_3 - 1)^2$$

Subject to the constraint

$$x_1 + 5x_2 - 3x_3 = 6,$$

and
$$x_1, x_2, x_3 \ge 0$$

8. a. Write notes on Multi-server Queuing models.

10 4 2

--- End of Paper ---