OP Code: RI	D21MSC071	

Reg.				
No				

AR 21

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Third Semester) Examinations, December - 2022

20MTPC302 - Number Theoretic Cryptography

(Mathematics)

Time: 3 hrs Maximum: 70 Marks

	(The figures in the right hand margin mulcate marks.)	
PART – A		$(2 \times 10 = 20 \text{ Marks})$

Q.1. Answer ALL Questions				
a.	Convert 10 ⁶ to the base 2,7 and 26	CO1	K1	
b.	Divide (40122) ₇ by (126) ₇	CO1	K1	
c.	Find $\varphi(n)$ for all n from 90 to 95	CO1		
d.	Make a table showing all quadratic residues and non-quadratic modulo p for $p=3,5,7,13,17$	CO2	K2	
e.	Evaluate the Legendre symbol $\left(\frac{1801}{8191}\right)$	CO2	K2	
f.	Find the inverse of the matrix $\begin{pmatrix} 15 & 17 \\ 4 & 9 \end{pmatrix} \mod 26$	CO2	K1	
g.	Prove that 2465 is a Carmichael number.	CO3	K2	
h.	Factor 200819 using Fermat factorization.	CO3	K2	
i.	Find all bases for which 15 is a pseudo prime.	CO4	K3	
j.	Find the smallest pseudo prime to the base 5.	CO4	K3	

PART - B (10 x 5 = 50 Marks)

Answer ANY FIVE questions				Blooms
				Level
2. a.	Let p be a prime number. Then show that any integer a not divisible by p satisfies $a^{p-1} \equiv 1 \mod p$	5	CO1	K2
b.	If a is relatively prime to m then prove that $a^{\varphi(m)} \equiv 1 \mod m$	5	CO1	K2
3.a.	Find the smallest positive integer which leaves a remainder of 1 when divided by 11, a remainder of 2 when divided by 12, and a remainder of 3 when divided by 13.	5	CO1	K2
b.	Prove that the Legendre symbol satisfies the following properties.	5	CO2	K2

- i) $\left(\frac{a}{p}\right)$ depends only on the residue of modulo p
- ii) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$
- iii) For b prime to 'p', $\left(\frac{ab^2}{p}\right) = \left(\frac{a}{p}\right)$

CO2 K3 In the 27- letter alphabet (with blank = 26), use the affine transformation with key 5 a = 13, b = 9 to encipher the message "HELP ME". 5 CO2 K3 Working in the 26-letter alphabet, use $\begin{pmatrix} 2 & 3 \\ 7 & 8 \end{pmatrix}$ mod 26. Encipher the plain text b. "NOANSWER" CO3 K2 Explain RSA algorithm with an example. 6 5.a. CO3 K2 Prove that a Carmichael number must be product of at least three distinct primes. 4 Factor 29895581 by using Fermat Factorization CO4 K3 10 CO4 K3 Factor 9509 using continued fraction algorithm 10 CO4 **K**3 Factor 1829 by taking $b_i = 42,43,61,74,85,86$ using factor base algorithm. 10

--- End of Paper ---