AR 21

QP Code: RD21MSC059

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Third Semester) Examinations, December - 2022

20MTPC301 - FUNCTIONAL ANALYSIS-1

(MATHEMATICS)

Time: 3 hrs Maximu				Marks	
(The figures in the right hand margin indicate marks.) $ PART-A $			$(2 \times 10 = 20)$		
Q.1. Answer ALL Questions		(CO#	Blooms Level	
a.	Define normed space with an example?	(01	K_1	
b.	What do we mean by a convex set?	(01	K_1	
c.	Define open ball and closed ball.	(01	K ₁	
d.	What is the condition for a mapping $F: X \to Y$ to be a Homeomorphism?	(02	K_1	
e.	Define the Banach space.	(02	K_1	
f.	State the Baire's theorem.	(02	K ₁	
g.	Define the interior point and the limit point of a space E.	(03	K_1	
h.	State the bounded inverse theorem	(03	K ₁	
i.	Define spectral radius.	(04	K_1	
j.	State the Banach-Steinhaus theorem.	(04	K ₁	
P	$PART - B (10 \times 5 = 50 \text{ Marks})$				
				/	
Ans	swer ANY FIVE questions	Marks	CO#	Blooms Level	
2.	Let <i>X</i> be a normed space. Then prove that the following conditions are equivalent.	10	CO1	K ₃	
	 i. Every closed and bounded subset of <i>X</i> is compact. ii. The subset <i>x</i> ∈ <i>X</i>: <i>x</i> ≤ 1 of <i>X</i> is compact. 				
	iii. X is finite dimensional				
3	Let X and Y be normed spaces and $F: X \to Y$ be a linear map such that the range $R(F)$ of F is finte dimensional. Then show that, if F is continuous if and only if the zero space $Z(F)$ of F is closed in X	10	CO1	K ₂	
4.	State and prove Hahn-Banach extension theorem	10	CO2	K_2	
5.	Prove that, a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X .	10	CO2	K ₃	
6.	State and prove the closed graph theorem	10	CO3	K ₃	
7.	State and proof the uniform boundedness principle	10	CO3	K ₃	
8.	Let X be a normed space, and $A \in BL(X)$ be of finite rank. Then prove that	10	CO4	K ₃	
	$\sigma_e(A) = \sigma_a(A) = \sigma(A).$				

--- End of Paper ---