AR 20

Reg. No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester – Regular) Examinations, December – 2022

BPCME5020- Machine Design-I

(Mechanical Engineering)

Maximum: 70 Marks

		Answ	er ALL	Questions		
РА	RT – A	The figures in the ri (Multiple Choice Questions)	ght han	d margin indicate marks. (1 x	$10 = 10 M_{\rm f}$	arks)
		(1 4				
<u>Q</u> .	1. Ans		[CO#]	[PO#]		
a.		tress which vary from a minimum variable or compressive) is called	alue to	a maximum value of the same natu	ire CO1	PO1
	i.	repeated stress	ii.	yield stress		
	iii.	fluctuating stress	iv.	alternating stress		
b.	Guest	's theory is used for			CO1	PO1
	i.	brittle materials	ii.	ductile materials		
	iii.	elastic materials	iv.	plastic materials		
c.	According to Indian standards, total number of tolerance grades are					PO1
	i.	8	ii.	12		
	iii.	18	iv.	20		
d.	The d	iameter of the rivet hole is usually	the	nominal diameter of the rivet.	CO2	PO1
	i.	Equal to	ii.	less than		
	iii.	more than	iv.	Double		
e.	A dou	ble strap butt joint (with equal straps)	is		CO2	PO1
	i.	always in single shear	ii.	always in double shear		
	iii.	either in single shear or double shear	iv.	any one of these		
f.	A cot	ter joint is used to transmit			CO2	PO1
	i.	axial tensile load only	ii.	axial compressive load only		
	iii.	combined axial and twisting loads	iv.	axial tensile or compressive loads		
g.	The sl	leeve or muff coupling is designed as a			CO3	PO1
	i.	thin cylinder	ii.	thick cylinder		
	iii.	solid shaft	iv.	hollow shaft		
h.	A feat	ther key is generally			CO3	PO1
	i.	loose in shaft and tight in hub	ii.	tight in shaft and loose in hub		
	iii.	tight in both shaft and hub	iv.	loose in both shaft and hub.		
i.	In the	levers of first type, the mechanical adv	antage	is one.	CO4	PO1
	i.	less than	ii.	equal to		
	iii.	more than	iv.	none of these		
j.	The h	andle of hand pump is of	type of	levers.	CO4	PO1
	i.	First type of Lever	ii.	Second type of Lever		
	iii.	Third type of Lever	iv.	None of these		

PAR	RT – B: (Short Answer Questions)	(2 x 10 = 20 Marks)		
<u>Q.2.</u>	Answer ALL questions		[CO#]	[PO#]
a.	State the importance of interchangeability.		CO1	PO1
b.	What is meant by 'hole basis system' and 'shaft basis system'? Which one is prefe and why?	erred	CO1	PO1
c.	What is meant by `Endurance limit'?		CO1	PO1
d.	Enumerate the different types of riveted joints.		CO2	PO1
e.	What is an economical joint and where does it find applications?		CO2	PO1
f.	Distinguish between cotter joint and knuckle joint.		CO2	PO1
g.	What is a key ? How are the keys classified?		CO3	PO1
h.	Discuss the function of a coupling. Give at least three practical applications.		CO3	PO1
i.	State the application of hand and foot levers.		CO4	PO1
j.	What do you understand by leverage ?		CO4	PO1
PART – C: (Long Answer Questions)				arks)
Answer ALL questions				[PO#]
3. a	A mild steel shaft of 50 mm diameter is subjected to a bending moment of 2000 N-m and a torque T. If the yield point of the steel in tension is 200 MPa, find the maximum value of this torque without causing yielding of the shaft according to	10	CO1	PO2
	i. the maximum principal stressii. The maximum shear stress andiii. the maximum distortion strain energy theory of yielding.			
	(OR)			
h	b. Illustrate how the stress concentration in a component can be reduced.	5	CO1	PO1
	 Calculate the tolerances, fundamental deviations and limits of sizes for the fit designated as 50H8f7. 	5	C01	PO2
4. a	a. Design a double riveted butt joint with two cover plates for the longitudinal seam of a boiler shell 1.5 m in diameter subjected to a steam pressure of 0.95 N/mm2. Assume joint efficiency as 75%, allowable tensile stress in the plate 90 MPa; compressive stress 140 MPa; and shear stress in the rivet 56 MPa.	10	CO2	PO3
	(OR)			
b	b. Design and draw a cotter joint to support a load varying from 50 kN in compression to 50 kN in tension. The material used is carbon steel for which the following allowable stresses may be used. The load is applied statically.	10	CO2	PO3
	Tensile stress = compressive stress = 60 MPa ; shear stress = 40 MPa and crushing stress = 75 MPa .			
5. a	 Two 35 mm shafts are connected by a flanged coupling. The flanges are fitted with 6 bolts on 125 mm bolt circle. The shafts transmit a torque of 800 N-m at 350 r.p.m. For the safe stresses mentioned below, calculate (i) diameter of bolts; (ii) thickness of flanges (iii) key dimensions (iv) hub length; and (v) power transmitted. 	10	CO3	PO2

Safe shear stress for shaft material = 63 MPa

Safe stress for bolt material = 56 MPa

Safe stress for cast iron coupling = 10 MPa

Safe stress for key material = 46 MPa

(OR)

CO3 PO2 b. Find the diameter of a solid steel shaft to transmit 20 kW at 200 r.p.m. The 5 ultimate shear stress for the steel may be taken as 360 MPa and a factor of safety as 8. c. Design the rectangular key for a shaft of 50 mm diameter. The shearing and 5 CO3 PO3 crushing stresses for the key material are 42 MPa and 70 MPa. A 45 mm diameter shaft is made of steel with a yield strength of 400 MPa. CO4 PO3 A Hand lever is 1.5 m from the Centre of shaft to the point of application of 10 6. a. 600 N load. Find (i) Diameter of the shaft (ii) Dimensions of the key and (iii) Dimensions of rectangular arm of the Hand lever at 40 mm from the centre of shaft assuming width of the arm as 3 times thickness. The allowable tensile stress may be taken as 65 MPa and allowable shear stress as 60 MPa. (OR) PO3 CO4 b. In a Hartnell governor, the length of the ball arm is 190 mm, that of the sleeve 10 arm is 140 mm, and the mass of each ball is 2.7 kg. The distance of the pivot of each bell crank lever from the axis of rotation is 170 mm and the speed when the ball arm is vertical, is 300 r.p.m. The speed is to increase 0.6 per cent for a lift of 12 mm of the sleeve. Find the necessary stiffness of the spring. i. Design the bell crank lever. The permissible tensile stress for the ii. material of the lever may be taken as 80 MPa and the allowable bearing pressure at the pins is 8 N/mm2.

--- End of Paper ---