QPC: RD20BTECH403

AR 20

Reg. No

(iii)

semaphores

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester – Regular) Examinations, December – 2022

BOECS5061– Operating System

(ECE)

Time: 3 hrs Maximum: 70 Marks

Answer ALL Questions The figures in the right hand margin indicate marks. **PART – A: (Multiple Choice Questions)** $(1 \times 10 = 10 \text{ Marks})$ [CO#] Q.1. Answer ALL questions [PO#] CO1 PO₁ A process which is copied from main memory to secondary memory on the basis of requirement is known as (i) paging (ii) demand paging (iii) threads (iv) segmentation CO₂ PO₁ Thread is a ___ (i) **Process** (ii) Light weight process Process with variables (iii) Process with data (iv) Buffering is ______ compared to spooling. CO₃ PO₁ Less efficient (i) (ii) more efficient (iv) none of the options (iii) equally efficient CO₄ PO₁ If the page size decreases, the internal fragmentation is _____ Decreases (ii) Increases (i) (iii) Remains constant (iv) none of the mentioned CO₃ PO₁ e. System calls are essential for (i) process (ii) thread (iii) both process and thread (iv) None of the mentioned CO₂ PO2 f. Physical Address is 17600 and logical address is 228. What is value of relocation register? (i) 17372 17472 (ii) (iii) 17482 (iv) 17382 PO2 Services of the operating system can be accessed by _ (ii) System calls (i) (i) Pages (ii) (iii) (iii) Assembly instructions (iv) Directory (iv) CO₃ PO₁ h. Which one is difficult to implement? **Fixed Partitioning** Variable partitioning (i) (ii) (iii) fixed None of the above Both and variable (iv) partitioning PO₁ In round Robin Scheduling difference between finished time and arrival time is CO₂ Response time Delay time (i) (ii) (iii) Waiting Time (iv) Turn around time "Wait" and "signal" are CO2 PO2 (i) **Processes** (ii) Threads

(iv)

atomic operations

PART – B: (Short Answer Questions)

 $(2 \times 10 = 20 \text{ Marks})$

Q.2. Answer ALL questions [CO#			[PO#]
a.	Define inter process communication.	CO1	PO1
b.	What is Time Sharing system?	CO2	PO1
c.	Provide is the concept of "Monitor".	CO2	PO2
d.	Briefly Explain contiguous memory allocation.	CO1	PO1
e.	If there are 400 tracks in a disk with the constant depending upon the disk drive is 0.004. Find out Seek time if start up time is 0.6 ms.	CO4	PO3
f.	Define time quantum. Where it is used?	CO4	PO1
g.	Draw the RAG for a circular wait condition.	CO3	PO1
h.	Provide the concept of the rotational latency.	CO3	PO1
i.	If the size of the RAM is 32 MB and process size is 4 MB. If I/O utilisation is 0.8 then what is CPU utilisation?	CO3	PO3
j.	Differentiate between Trashing and demand paging.	CO2	PO1

PART – C: (Long Answer Questions)

 $(10 \times 4 = 40 \text{ Marks})$

CO2 PO3

Answe	Answer ALL questions Marks [CO#] [PO#]		[PO#]	
3. a.	Explain about PCB.	5	CO1	PO1
b.	b. How process state transition happens? Explain in detail with process state diagram.		CO1	PO1
	(OR)			
c.	Explain in detail about the significance of system calls with system call architecture.	5	CO2	PO1
d.	d. Differentiate between process and thread.		CO2	PO1
4. a.	The process with their burst time has been given in the table below. Apply both SJF and FCFS Algorithm and calculate average turnaround time, average waiting time and average first response time. Compare the performance.	5	CO2	PO3

Process	Burst Time(ms)
P1	25
P2	52
Р3	43
P4	3
P5	9

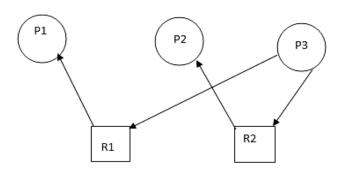
b. The process with their burst time has been given in the table below. Apply **Shortest Time Remaining First Algorithm** and calculate average turnaround time, average waiting time and average first response time.

Process	Arrival Time (ms)	Burst Time(ms)
P1	0	5
P2	1	3
P3	2	4
P4	4	1

c.	What is priority scheduling? Explain in detail about priority scheduling with one	5	CO3	PO1
	example.			

d. The process with their burst time has been given in the table below. Apply ROUND ROBIN Algorithm and calculate average turnaround time, average waiting time and average first response time. All the process arrives at 0. Time quantum is 7 ms.

Process	Burst Time (ms)
P1	35
P2	7
Р3	12


Explain about significance of Paging? Explain in detail about the memory mapping CO3 PO1 using paging. PO1

CO3 Explain about the contiguous and non-contiguous memory allocation with proper diagram.

(OR)

5 CO3 Explain about Bankers algorithm with proper example.

5 CO3 PO3 d.

Explain the scenario of the above RAG. When deadlock will be there and when deadlock will be vanished?

PO1 6. a. Explain about SCAN and SSTF Algorithm for Disk Scheduling. 5 CO₂

CO4 PO1 Differentiate between logical address and physical address. How Physical address is generated? Explain with the diagram.

Explain about producer consumer problem in detail.

CO₄ CO4 PO1

PO1

5

CO3

PO1

PO1

Provide the concept in detail about the two-process solution for critical section problem.

--- End of Paper ---