AR 20

Reg. No

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester – Regular) Examinations, December – 2022

BPCEC5040 – Electromagnetic Waves

(ECE)

Maximum: 70 Marks

1 111	ie. 5 ms			111	uxillium. 70	Marks
				Questions		
DA	рт л.		ght hand	l margin indicate marks.	(1 v 10 - 10 N	(onlea)
PA.	$\mathbf{K}\mathbf{I} - \mathbf{A}$:	(Multiple Choice Questions)			$(1 \times 10 = 10 \text{ N})$	arks)
<u>Q</u> .	1. Answe	er ALL questions			[CO#]	[PO#]
a.	A poin	t charge 2nC is located at origin. Wh	at is the	potential at (1,0,0)?	CO2	PO2
	(i)	12	(ii)	14		
	(iii)) 16	(iv)) 18		
b.	The Ste	oke's theorem uses which of the follo	owing of	peration?	CO2	PO1
	(i)	Divergence	(ii)	Gradient		
	(iii)) Curl	(iv)) Laplacian		
c.	The sp	herical equivalent of the vector $\mathbf{B} = \mathbf{y}$	/i + (x +	z)j located at (-2,6,3) is given by	CO1	PO2
	(i)	(7,64.62,71.57)	(ii)	(7,-64.62,-71.57)		
	(iii)) (7,-64.62,71.57)	(iv)) (7,64.62,-71.57)		
d.	The po	int form of Ampere law is given by			CO3	PO1
	(i)	Curl(B) = I	(ii)	Curl(D) = J		
	(iii)	$\operatorname{Curl}(V) = I$	(iv)	Curl(H) = J		
e.	Find th	e power of a wave given that the RM	S value	of E and H are 6 and 4.5 respective	ely. CO3	PO2
	(i)	24	(ii)	27		
	(iii)	29	(iv)	32		
f.	The no	rmal component of which quantity is	s always	discontinuous at the boundary?	CO4	PO1
	(i)	E	(ii)	D		
	(iii)) H	(iv)	B		
g.	In free	space, which parameter will be unity	/?		CO4	PO1
	(i)	Permittivity	(ii)	Absolute permittivity		
	(iii)	Relative permittivity	(iv)	Permeability		
h.	EM wa	wes do not travel inside metals. State	e True/F	alse.	CO4	PO3
	(i)	True	(ii)	False		
i.	Which	of the following is true regarding att	enuation	n?	CO5	PO1
	(i)	Conductor loss	(ii)	Di-electric loss		
	(iii)	Sum of both conductor loss and dielectric loss	(iv)	Attenuation is different from losses	the	
j.	We say	a transmission line is matched when	1		CO5	PO1
	(i)	$Z_L = Z_0$	(ii)	$Z_L = \sqrt{Z_0}$		
	(iii)	$Z_{L} = Z_{0}/2$	(iv)	$Z_{L} = 2Z_{0}$		
PART – B: (Short Answer Questions) (2 x 10						
<u>Q.2. Answer <i>ALL</i> questions</u>						[PO#]
a	. State	coulombs law			CO2	PO1
b		the condition for the vector F to be in	rrotation	al.	CO2	PO1

c. What are the ranges of the variables in the Spherical coordinate system.

			CO2	DO1		
	Define electric potential.		CO3 CO3	PO1 PO1		
e. f.						
1.	direction of wave propagation? Calculate β					
g.	What is loss tangent? Give its significance.		CO5	PO1		
ь. h.	Write wave equations in electric and magnetic fields		CO4	PO1		
i.	Define Characteristic impedance		CO5	PO1		
j.	What is a finite line? Write down the significance of this line		CO5	PO1		
PART – C: (Long Answer Questions) (10 x 4 =						
Answe	er ALL questions	Marks	[CO#]	[PO#]		
3. a.	Express the vector $\vec{A} = \frac{k}{\rho^2} \vec{a_{\rho}} + 5 \sin 2\phi \vec{a_Z}$ in cartesian coordinate system.	5	CO2	PO2		
	F. Contraction of the second se		CO2	PO2		
b.	b. Two point charges of equal mass M and charge Q are suspended at a common 5 point by 2 threads of negligible mass and length L. Show that at equilibrium $Q^2 = 16\pi\epsilon_0 MgL^2 sin^2 \alpha tan \alpha$ with an inclination angle of α . (OR)					
c.	Derive the expression of electric field intensity due to surface charge.	6	CO1	PO 2		
d.	Find the total charge over volume with volume charge density of -5 x e^{-10^5}	4	CO2	PO 2		
	$\mu C/m^3$. The radius of the cylinder is 1 cm, the range of z varies from 2 cm to 4 cm. Find the total charge Q.					
4. a.	Derive the wave equation for time varying electric field and magnetic field.	5	CO2	PO2		
b.	In free space, electric field is given as, $\vec{E} = 20 \cos(\omega t - 50x)\vec{a}_Y$ V/m. Calculate \vec{J}_d and \vec{H} in terms of ω .	5	CO3	PO2		
	(OR)					
c.	Derive the expression for Helmholtz equation.	6	CO2	PO2		
d.	The phasor form of a vector is given by, $\overrightarrow{A_s} = (4 - j3) e^{-j\beta x} \overrightarrow{a_Y}$. Convert it to instantaneous form.	4	CO2	PO2		
5. a.	Comment on the nature of wave parameters when the wave propagates through 6 good conductor.			PO1		
b.	Calculate the attenuation and phase constant for a uniform plane wave with	4	CO3	PO2		
	frequency of 10GHz in a medium where $\mu = \mu_0$, $\epsilon_r = 2.3$ and					
	$\sigma = 2.56 \text{ x } 10^{-4} \text{Mho/m.}$					
	(OR)		CO1	DO1		
с.	Briefly discuss the Ampere circuital law.	4	CO1	PO1		
d.	Explain Poynting Theorem and derive the expression of poynting vector	6	CO3	PO 2		
6. a.	Derive transmission line equations.	5	CO5	PO 2		
b.	A 70 m long lossless transmission line has a inductance and capacitance of 12 mH and 7nF respectively. Determine,	5	CO5	PO 2		
	(i) Velocity of propagation.					
	(ii) Phase constant for an operating frequency of 60KHz.(OR)					
c.	Find out the point P(2, 3, 5) in cylindrical coordinate system and Q(2, $\frac{\pi}{6}$,3) in	6	CO2	PO2		
	cartesian coordinate system.					
d.	Prove that $\nabla \cdot (\nabla \times A) = 0$	4	CO2	PO 2		
	End of Paper					

Page 2 of 2