
AR 20

Reg. No

Maximum: 70 Marks

Time: 3 hrs

QPC: RD20BTECH327

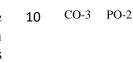
GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester – Regular) Examinations, December – 2022

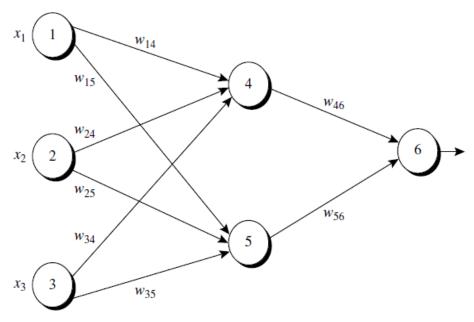
BPCCS5010/BPCCT5010 - Data Mining & Data Warehousing

(CSE & CST)

1 11.	ne. 5 m	.5		IVIAXIIIIU	III. 70	iviaiks					
		Answer	ALL (Questions							
			hand	margin indicate marks.							
PART – A: (Multiple Choice Questions) (1 x 10 = 10 Marks)											
Q .1	l. Answ	ver ALL questions			CO#	PO#					
a.	What o	does Apriori algorithm do?			CO-3	PO-1					
	i. iii.	It mines all frequent patterns through pruning rules with lesser support Both 1 and 2	ii. iv.	It mines all frequent patterns through pruning rules with higher support None of the above							
b.		is not true about FP growth algorithms?	17.	Trone of the above	CO-2	PO-2					
υ.			::	There are changes that ED trace may not	002	102					
	i.	It mines frequent itemsets without candidate generation.	ii.	There are chances that FP trees may not fit in the memory							
	iii.	FP trees are very expensive to build	iv.	It expands the original database to build FP trees.							
c.	What i	is Gini index?			CO-3	PO-1					
	i.	It is a type of index structure	ii.	It is a measure of purity							
	iii.	Both options except none	iv.	None of the options							
d.	Which	one of these is not a tree based learner?		•	CO-2	PO-2					
	i.	CART	ii.	ID3							
	iii.	Bayesian classifier	iv.	Random Forest							
e.											
	i.	Expert system technology	ii.	Data visualization							
	iii.	Technology limited to specific data	iv.	Parallel architecture							
f.		types such as numeric data types of the following features usually applies to c			CO-3	PO-1					
	i.	Data are often deleted	ii.	Most applications consist of transactions							
	iii.	Data are rarely deleted	iv.	Relatively few records are processed by applications							
g.											
		A column									
	iii.	An attribute	iv.	A relation							
h.	A null	value indicates:			CO-1	PO-1					
	i.	A numeric value with value 0	ii.	The absence of a value							
	iii.	A very small value	iv.	An erroneous value							
i.		llowing is a major disadvantage while using	a neura	al network	CO-2	PO-2					
	i.	It is very difficult to find optimal or near optimal parameters for the network	ii.	Interpretation of the model becomes very difficult							
	iii.	It becomes difficult to model non-linear relation between input and output variables	iv.	The number of inputs it can handle are limited							
j.	In train	ning a neural network using back propagation	algori	ithm	CO-2	PO-2					
	i.	Chain rule of differentiation is used in computing gradient of the error surface	ii.	Activation functions are chosen so that they are differentiable in nature							
	iii.	The connecting weights can be generated initially at random in the	iv.	All of the above							


range of (0.0, 1.0)

PAF	PART – B: (Short Answer Questions)									(2 x 10	0 = 20	Marks)		
Q2.	Answer A	ALL que	estions									CO#	PO#	
a.	What is	-		covery?								CO-1	PO-1	
b.													PO-2	
c.	Define fact table.											CO-4	PO-1	
d.	Define metadata and explain the types of metadata												PO-1	
e.	Define support and confidence.												PO-1	
f.													PO-1	
	X=[3,2,0,5,0,0,0,2,0,0]													
	Y=[1,0,0,0,0,0,1,0,2]													
g.	What is attribute selection measure?												PO-1	
h.	Briefly describe the k-NN classification algorithm.												PO-3	
i.	Give two	examp	les of ac	ctivation	function	n used i	n neural	networ	ks.			CO-3	PO-2	
j.	Explain	the princ	ciple of	hierarch	ical clus	stering.						CO-3	PO-1	
DA 1	RT – C: (I ong A	newor (Juostini	1 0)						$(10 \times 4 = 40 \text{ Marks})$			
LA	KI – C. (.	Luiig A	iiswei (Zuesnoi	13)						$(10 \times 4 - 40 \text{ Marks})$			
Ans	wer ALL	question	<u>1S</u>								Marks	CO#	PO#	
3.a.	•		how to o	-		similarit	y betwee	en objec	ts descri	bed by	5	CO-1	PO-2	
	i. ii. iii. :	Categor Ratio-s	rical var	iables riables	aled) var	riables								
1.	iv.		tric vect	•		- ec - 4:					5	CO-1	PO-1	
D.	b. Explain the steps of KDD, with the help of a diagram. (OR)											CO-1	10-1	
c.					`	ge and	body fa	t data f	for 18 ra	andomly	10	CO-2	PO-2	
	Age	23	23	27	27	39	41	47	49	50				
	% fat	9.5	26.5	7.8	17.8	31.4	25.9	27.4	27.2	31.2				
	Age	52	54	54	56	57	58	58	60	61				
	% fat	34.6	42.5	28.8	33.4	30.2	34.1	32.9	41.2	35.7				
	i. 								age and					
	ii.						_		vo attrib	utes.				
4.a.	Explain how Apriori Algorithm is used for mining frequent item sets.										5	CO-2	PO-1	
b.	What are the measures of interestingness for an association rule? Define strong association rule.										5	CO-2	PO-2	
					(C	OR)								
c.	as T1(B,C),T2 low Apr	(A,C,D) riori Rul	,T3(B,C	C), T4(A,B,C,Γ), T5(1	В,D). Т	The min	urchased n_sup=2. on rules	10	CO-3	PO-2	


- 5.a. What is decision trees algorithm? List down the attribute selection measures used by the ID3 algorithm to construct a Decision Tree.
 - o. Write short answer on Naïve Bayes classifier. 5 CO-2 PO-1

(OR)

c. A multilayer feed-forward neural network is shown in below Figure. Let the learning rate be 0.9. The initial weight and bias values of the network are given in Table below, along with the first training tuple, X = (1, 0, 1), with a class label of 1. Compute Net input, output and error at each node and update weight and bias values just once. Use logistic activation function at nodes 4, 5 and 6.

CO-2 PO-2

Initial Input, weight and Bias values:

<i>x</i> ₁	x_2	x_3	W ₁₄	<i>w</i> ₁₅	w_{24}	<i>w</i> ₂₄	W_{34}	W ₃₅	W ₄₆	w ₅₆	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

- 6.a. Why is outlier mining important? Briefly describe the different approaches behind distanced-based outlier detection and density based local outlier detection.

5

- b. Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8): Compute the *Minkowski distance* between the two objects, using q = 3.
- 5 CO-2 PO-1

CO-2 PO-2

(OR)

- c. Both *k-means* and *k-medoids* algorithms can perform effective Clustering. Illustrate the strength and weakness of *k-means* in comparison with the *k-medoids* algorithm.
- 5 CO-3 PO-2
- d. Suppose that the data mining task is to cluster the following eight points (with (x, y) representing location) into three clusters:

5 CO-3 PO-2

A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9): The distance function is Euclidean distance. Suppose initially we assign A1, B1, and C1 as the center of each cluster, respectively.

Use the *k-means* algorithm to show *only*

- i. The three cluster centers after the first round execution
- ii. The final three clusters

--- End of Paper ---