AR 20

Time: 3 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester – Regular) Examinations, December – 2022 BPCCV5010 – REINFORCED CONCRETE DESIGN

(Civil Engineering)

Maximum: 70 Marks

(2 x 10 = 20 Marks)

		Answ	er AL	L Questions				
The figures in the right hand margin indicate marks.								
PART – A: (Multiple Choice Questions) (1 x 10) = 10 Marks)		
<u>Q.</u>		ver ALL questions			[CO#]	[PO#]		
a.		acteristic strength of material is			C01	PO1		
	i.	5% test as likely to fail	ii.	6% test as likely to fail				
	iii.	7.5% test as likely to fail	iv.	10% test as likely to fail				
b.		acteristic strength of M20 grade is			CO2	PO2		
	i. 	20 N/m	ii.	20 MPa				
	iii.	20 N/m ²	iv.	20 N/mm				
c. Basic depth to span length ratio for simply supported beam as per code is					CO2	PO2		
	i.	15	ii.	20				
	iii.	25	iv.	30				
d.	Quali	ty of water in concrete should be			CO1	PO1		
	i.	Potable water	ii.	Ocean water				
	iii.	Brackish water	iv.	Bore well water				
e.	Effec	tive cover for foundation should be			CO2	PO2		
	i.	10	ii.	15				
	iii.	25	iv.	50				
f.	Work	ability for pumpable concrete			CO1	PO2		
	i.	10-25	ii.	50-60				
	iii.	130-150	iv.	75-100				
g.	Curin	g of concrete is done for			CO1	PO1		
_	i.	3 days	ii.	7 days				
	iii.	14 days	iv.	28 days				
h.	Tensi	le strength of concrete is			CO2	PO2		
	i.	$0.5 (f_{ck})^{0.5}$	ii.	$0.7 (f_{ck})^{0.5}$				
	iii.	$2 (f_{ck})^{0.5}$	iv.	$1.5 (f_{ck})^{0.5}$				
i.	In M2	20 grade concrete, 20 is the			CO1	PO1		
	i.	Characteristic compressive	ii.	Characteristic tensile strength				
		strength						
	iii.	Characteristic shear strength	iv.	Characteristic torsional strength				
j.	Full f	orm of HYSD bar is			CO1	PO1		
	i.	High yield strength durable	ii.	High yield strength deform				
	iii.	High yield steel deform	iv.	High yield short deform				

PART – B: (Short Answer Questions)

Q.2. Ans	wer ALL questions	[CO#]	[PO#]
a. De	fine limit state of collapse.	CO1	PO1
b. Wl	nat are the various limit states?	CO2	PO1
c. Dit	ferentiate between concrete and steel structures.	CO2	PO1

d.	Explain the importance of development length.	CO	3	PO2
e.	Calculate the value of $X_{u max}/d$ for Fe 500.	CO	1	PO1
f.	State the quality of water to use for concreting.	CO	1	PO1
g.	Differentiate between nominal mix and design mix concrete.	CO	2	PO1
h.	What are the various grades of concrete.	CO	2	PO1
i.	Draw stress block and strain diagram for singly reinforced rectangular beam.	CO	1	PO1
j.	Explain creep in concrete.	CO	1 1	PO1
PAR	$\Gamma - C:$ (Long Answer Questions) (10 x -	4 = 40	Marl	ks)
Ansv	ver ALL questions	Marks	[CO#]	[PO#]
3.a.	Determine the moment of resistance of a rectangular beam of size 230mmX375mm (bXd) reinforced with 4X16 mm dia steel bars in tension and 3X16 mm dia steel bars in compression.	7	CO1	PO2
	(Use M20 concrete and Fe 500 grade steel)			
b.	Check for deflection as per codal provision, if the span is 5m for problem no 3(a).	3	CO1	PO2
	(OR)		CO2	PO2
c.	Design a circular column to carry an axial load of 1000 kN.	7	CO1	PO1
	(Use M20 concrete and Fe 415 grade steel)			
d.	Calculate xumax/d value for Fe 500 steel	3	CO2	PO2
4.a.	Design a rectangular beam of size 230mmX400mm (bXd) for flexure. Beam is subjected to a bending moment of 150 kNm.	7	CO1	PO1
	(Use M20 concrete and Fe 500 grade steel) Assume any other data required.			
b.	Describe various methods of curing.	3	CO2	PO1
	(OR)			
c.	Design a rectangular beam of size 230mmX350mm (bXd) for shear. Beam is subjected to an shear force of 100 kN. The beam is reinforced with 4X16 mm dia steel bars in tension.	7	CO1	PO1
	(Use M20 concrete and Fe 500 grade steel) Assume any other data required.			
d.	How to ensure quality in concreting ?.	3	CO2	PO1
5.a.	Design a slab for a room of size 4mX6m as per the following data	7	C02	PO2
	Live load 10 kN/m ² , Floor finish 1 N/m ² , slab is supported on all four sides.			
	(Use M20 concrete, Fe 500steel)			
b.	Calculate the value of $X_{u max}/d$ for Fe 415 steel	3	CO1	PO1
	(OR)			
c.	Design a square foundation for a column of size 300X300 mm. Axial load of column is 1000kN. Bearing capacity of soil is 250 kN/m^2	7	CO1	PO2
d.	Differentiate between one way and two way slab with example.	3	CO2	PO2
6.a.	Design a singly reinforced beam of width 250mm for flexure. Beam is subjected to a bending moment of 150 kNm.	7	CO1	PO2
	(Use M20 concrete and Fe 500 grade steel) Assume any other data required.			
b.	Differentiate between a short column and long column. What are the various assumptions for limit state method in flexure.	3	CO3	PO3

(OR)

c.	Calculate the load carrying capacity of rectangular column of size 230X450 mm reinforced	5	CO2	PO1
	with 6X16 mm dia. (Use M25 concrete and Fe 500 grade steel)			
d.	Check the deflection of a singly supported beam for the following data	5	CO3	PO2
	Span of beam 4.75 m, Width 2.5m, Over all Depth of 400 mm			
	(Use M25 concrete and Fe 500 grade steel)			

--- End of Paper ---