AR 20

Answer ALL Questions The figures in the right hand margin indicate marks.

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fifth Semester – Regular) Examination, December – 2022

BPCCH5030 – Transport Phenomena

(Chemical Engineering)

Time: 3 hrs

Maximum: 70 Marks

PART – A: (Multiple Choice Questions) (1 x 10				0 =10 Ma	arks)	
Q.1. Answer ALL questions				[CO#]	[PO#]	
a.	1cP is	-			CO1	PO1
	(i)	0.1 Pa-s	(ii)	0.01 Pa-s		
	(iii)	0.001 Pa-s	(iv)	None of these		
b.	× /	film the shear stress distribution is	. ,		CO1	PO1
	(i)	Linear	(ii)	Parabolic		
	(iii)	Logarithmic	(iv)	None of these		
c.	The shea	r stress distribution is in natur	e for ste	eady laminar flow of Newtonian flui	d CO1	PO1
	in a pipe.					
	(v)	Linear	(vi)	Parabolic		
	(vii)	Logarithmic	(viii)	None of these		
d.	Energy so	burce are			CO2	PO1
	(i)	Electrical	(ii)	Viscous		
	(iii)	Both (i) & (ii)	(iv)	None of these		
e.	The ratio	of thermal diffusivity to momentum of	diffusivi	ity	CO2	PO2
	(i)	Prandtle number	(ii)	Inverse of Prandtl number		
	(iii)	Both (i) & (ii)	(iv)	None of these		
f.	Reynolds	number is used in			CO1	PO1
	(i)	Momentum transfer	(ii)	Energy transfer		
	(iii)	Both (i) & (ii)	(iv)	None of these		
g.	Time ave	rage of the fluctuating component is			CO4	PO1
	(i)	1	(ii)	0		
	(iii)	Time dependant	(iv)	None of these		
h.	In creepir	ng flow around sphere, the friction fac	ctor is		CO1	PO1
	(i)	16/Re	(ii)	24/Re		
	(iii)	Both (i) & (ii)	(iv)	None of these		
i.		mixing length l_m is			CO4	PO1
	(i)	U'×(du/dy)	(ii)	U'/(du/dy)		
	(iii)	$U'/(du/dy)^2$	(iv)	$U'^{2}/(du/dy)$		
j.		g to Newton's Resistance Law friction			CO4	PO1
	(i)	0.4	(ii)	0.44		
	(iii)	0.5407	(iv)	0,079		
P	PART – B:	(Short Answer Questions)		(2 x 10	=20 Mar	ks)
<u>Q.2</u>	2. Answer A	LL questions		I	CO#] []	PO#]
a.		alar, vector and Tensor.			CO1 I	PO1
b.		ombined momentum flux?			CO1 I	PO1
		P	age 1 of	2		

c.	Write the shear stress expression for Power law and Bingham fluid model.		PO1
d.	Write Fourier's Law of heat conduction with linear temp. gradient.	CO2	PO1
e.	Define thermal conductivity and its unit in MKS system.	CO2	PO1
f.	How diffusivity of liquids is varies with temperature?	CO2	PO2
g.	Write Fick's Law of diffusion	CO3	PO1
h.	What is friction factor?	CO4	PO1
i.	Write the Prandtle formula for friction factor.	CO4	PO1
j.	What are molecular and convective molar fluxes?	CO3	PO1

PART – C: (Long Answer Questions) (10 x 4=40 Marks)

Answer ALL questions		Marks	[CO#]	[PO#]
3.a.	Derives an expression for average velocity in a circular pipe of radius R and length L when a Newtonian fluid is flowing inside the pipe vertically downward		CO1	PO2
	(OR)			
b.	Derives an expression for velocity profile in a circular pipe of radius R and length L when a Bingham fluid is flowing inside the pipe vertically downward	10	CO1	PO2
4.a.	A heated sphere of radius R is suspended in a large container of motionless body of fluid. Show that, $Nu = \frac{hD}{K} = 2$.	10	CO2	PO2
	(OR)			

b.

The heat generate per unit volume in a parallel plate is given by $S_v = \mu \left(\frac{v}{b}\right)^2 \cdot \frac{w}{m^3}$, 10 CO2 PO2 where v is the upper plate velocity; b is the distance between two plates. Taking origin at the lower plate with boundary condition x = 0, $T = T_0$, and x = b, $T = T_b$, Derive an expression for dimensionless temperature difference profile in terms of Brinkman

number (Br), where $Br = \frac{\mu v^2}{k(Tb - To)}$

5.a. Diffusion of A through a stagnant gas film. Derive a expression for mass flax in 10 CO3 PO2 z-direction i.e. $N_{Az} = \frac{CD_{AB}}{Z_2 - Z_1} (x_{A1} - x_{A2})$, by neglecting $x_A(N_A + N_B)$.

(OR)

b.	Derive an expression for steady state equimolar counter diffusion.	10	CO3	PO2
6. a.	Show the time average of fluctuating velocity component is zero	5	CO3	PO2
b.	Derive the formula for Fanning friction factor	5	CO4	PO2
	(OR)			
c.	Convert the differential equation into dimensionless form with Reynolds number and Prandtle number. $K \frac{d^2T}{dz^2} = \rho C p \frac{dT}{dt}$	5	CO4	PO2

d. Derive the formula for friction factor in creeping flow around sphere 5 CO4 PO2