QP Code:	RD21BTECH045
----------	--------------

Reg. No

AR 21

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester - Regular) Examinations, December - 2022

21BAEES23001– Heat and Mass Transfer

(AGE)

Time: 3 hrs

PART – A

Maximum: 70 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

(2 x 5 = 10 Marks)

Q.1. Answer ALL questions		CO #	Blooms Level
a.	Define the contact resistance.	CO1	K2
b.	Differentiate between convection and conduction.	CO3	K1
c.	Define Emissivity.	CO1	K1
d.	Write the expression of LMTD for a parallel flow heat exchanger.	CO4	K1
e	Define Reynolds Number. State the condition for laminar flow and turbulent flow.	CO2	К1

e. Define Reynolds Number. State the condition for laminar flow and turbulent flow..

PART – B

(15 x 4 = 60 Marks)

Answer the following questions		Marks	CO #	Blooms Level
2. a.	Hot air at a temperature of 65^{0} C is flowing through a steel pipe of 120 mm diameter. The pipe is covered with two different layers of insulating materials of thickness 60 mm and 40 mm and their corresponding thermal conductivities are 0.24 and 0.4 W/m ⁰ C. The inside and outer heat coefficients are 60 and 12 W/m ² °C. The atmosphere is at 20 ^o C. Find the rate of heat loss from 60 m length of pipe.	10	C01	К2
b.	A plane wall is 150 mm thick and its wall area is 4.5 m^2 . If its conductivity is $9.25 \text{ W/m}^0\text{C}$ and surface temperature are steady at 150^0C and 45^0C respectively. Determine- a) heat flow across the plane wall b) temperature gradient in the flow direction. (OR)	5	CO1	К2
c.	Derive the expression for steady state one dimensional heat conduction equation in Cartesian system with internal heat generation.	10	CO2	К2
d.	A surface area 3 m ² at 200 0 C exchanges heat with another surface at 30 0 C by radiation. If the emissivity of the surface is 0.69, calculate- a) rate of heat transfer b) equivalent convective heat transfer coefficient.	5	CO1	К2
3.a.	A vertical cylinder 1.5 m high and 180 mm in diameter is maintained at 100 ^o C in an atmospheric environment of 20 ^o C. Calculate the heat loss by free convection from the surface of the cylinder. Assume the properties of air at mean temperature are: $\rho = 1.09 \text{ kg/m}^3$, k=0.1042 kW/m ^o C, Pr= 0.7, v = -18.97× 10 ⁻⁶ m ² /s, c _p =1.004 kJ/kg. ^o C.	10	CO3	К2
b.	Define Grashoff Number, Stanton Number with expression. (OR)	5	CO3	К1
c.	Calculate the amount of energy required to solder together two very long pieces of bare copper wire 1.5 mm in diameter with solder that melts at 190°C. The wires are positioned vertically in air at 20°C. Assume that the heat transfer coefficient	10	CO2	К2

on the wire surface is 20W/ m^{2} ⁰C and thermal conductivity of wire alloy is 330 W/m⁰C.

d.	List out the assumptions made for analysis of heat flow through fins.	5	CO2	K1
4.a.	A liquid (Cp=0.9 kJ/kg K) is entering a counter flow heat exchanger at 35°C at a	10	CO4	K2
	rate of 4.5 kg/s. It is heated to 75°C by another fluid (Cp=1 kJ/kg K) with a flow			
	rate of 2.5 kg/s entering at 900°C. With these things remaining same, what will			
	be percentage change in the area of heat exchanger if the fluid is heated up to			
	600°C instead of 750°C?			
b.	Explain condenser and evaporator type heat exchanger.	5	CO4	K1
	(OR)			
c.	Explain the laws associated with radiative heat transfer.	8	CO1	K1
d.	A longitudinal copper fin (k = 380 W/m $^{\circ}$ C) 600 mm long and 5 mm in diameter is	7	CO4	К2
	exposed to air stream at 20 $^{\circ}$ C. The convective heat transfer coefficient is 20W/m ² $^{\circ}$ C. if			
	the fin base temperature is 150 °C, calculate heat dissipated and efficiency of the fin.			
5.a.	A mild steel tank of wall thickness 12 mm contains water at 95 $^{\circ}$ C. The thermal	12	CO1	K2
	conductivity of mild steel is 50W/m ^o C and the heat transfer coefficients for the			
	inside and outside the tank are 2850 and $10W/m^{20}C$ respectively. If the			
	atmospheric temperature is 15°C, calculate the rate of heat loss per sq. metre of			
	the tank surface and temperature of the outside surface of the tank.			
b.	Define critical thickness and write expression for critical thickness of a sphere.	3	CO2	K1
	(OR)			
c.	The effective temperature of a body having an area of 0.1 m ² is 627 °C. Calculate the	8	CO1	К2
	total rate of energy emission, intensity of normal radiation and wavelength of maximum			
	monochromatic emissive power.	_	604	1/2
d.	Calculate the net radiant heat exchange per m^2 area for two parallel plates at	7	CO1	К2
	temperatures of 427° C and 27° C respectively. The emissivity of hot plate and cold			
	plate are 0.9 and 0.6 respectively.			
	End of Paper			

--- End of Paper ---