| Reg. |  |  |  |  |  |
|------|--|--|--|--|--|
| No   |  |  |  |  |  |



# **GIET UNIVERSITY, GUNUPUR – 765022**

B. Tech (Third Semester - Regular) Examinations, December - 2022

21BELPC23003 – Electromagnetic Fields

(EE & EEE)

Time: 3 hrs

PART – A

#### Maximum: 70 Marks

# Answer ALL questions (The figures in the right hand margin indicate marks)

# $(2 \times 5 = 10 \text{ Marks})$

AR 21

| Q.1. Answer ALL questions |                                                                                                 |   | Blooms<br>Level |
|---------------------------|-------------------------------------------------------------------------------------------------|---|-----------------|
| a.                        | Convert a point (1,2,3) to cylindrical coordinate system.                                       | 1 | 2               |
| b.                        | Mention the various applications of Amperes Law.                                                | 3 | 2               |
| c.                        | Write the Maxwell's equation for static field.                                                  | 3 | 2               |
| d.                        | Define Faraday's Law of electromagnetic induction and Maxwell's equation in time varying field. | 4 | 3               |
| e.                        | Give the relation between electric field intensity (E) and electric potential (V)               | 2 | 3               |

### PART - B

# (15 x 4 = 60 Marks)

| Answer ALL questions |                                                                                                                                                                                                                                                              |   | CO # | Blooms<br>Level |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------|-----------------|
| 2. a.                | State and derive the expression for the Stoke's Theorem.                                                                                                                                                                                                     |   |      | 2               |
| b.                   | Two vector A & B are given at a point (2, -1, 4) in space as $A = 20 x a_x - 15y a_y + 10 a_z \& B = -3 x 3 a_x - 4 a_y + 10 x y a_z$ determine (a) The scalar component of A in the direction of vector B. (b) A unit vector perpendicular to both (A x B). |   |      | 3               |
|                      | (OR)                                                                                                                                                                                                                                                         |   |      |                 |
| c.                   | For a vector field explicitly show that the divergence of the curl of any vector field is zero.                                                                                                                                                              | 7 | 1    | 2               |
| d.                   | Determine Laplacian of a scalar field $A = \rho z \sin \phi + z^2 \cos^2 \phi + \rho^2$ .                                                                                                                                                                    | 8 | 1    | 3               |
| 3.a.                 | A point charge $2mc \& -3mc$ are located at $(1,2,-3) \& (-2,-1,4)$ respectively.<br>Calculate the electric force on a 100nc charge located at $(0,3,1)\&$ electric field intensity at that point.                                                           | 7 | 2    | 3               |
| b.                   | Derive the relation between E & V-Maxwell's equations.                                                                                                                                                                                                       | 8 | 2    | 2               |
|                      | (OR)                                                                                                                                                                                                                                                         |   |      |                 |
| c.                   | Determine D at $(3,0,2)$ if there is a point charge $-3\pi$ mc at $(2,0,0)$ & line charge $2\pi$ mc/m along the Y-axis.                                                                                                                                      | 7 | 2    | 3               |
| d.                   | What is uniqueness theorem, explain briefly.                                                                                                                                                                                                                 | 8 | 2    | 2               |
| 4.a.                 | Explain and derive the equation for magnetic scalar potential.                                                                                                                                                                                               | 7 | 3    | 2               |
| b.                   | Given the magnetic vector potential A = $-\rho^2$ /4 wb/m, calculate the total magnetic flux crossing the surface $\varphi = \pi/2$ , $1 \le \rho \le 2$ m, $0 \le z \le 3$ m.                                                                               | 8 | 3    | 3               |
|                      | (OR)                                                                                                                                                                                                                                                         |   |      |                 |
| с.                   | Discuss about the applications of amperes law for infinite line current.                                                                                                                                                                                     | 7 | 3    | 2               |
| d.                   | A circular loop located on $x^2 + y^2 = 25$ , $z = 0$ carries a direct current of 5A along a $\varphi$ , determine H at (0,0,2) & (0,0,-5)                                                                                                                   | 8 | 3    | 3               |

| 5.a. | A parallel plate capacitor with plate area of 3 cm <sup>2</sup> & plate separation of 3mm has a voltage 20 sin10 <sup>3</sup> t V applied to its plate. Calculate the displacement current assuming $\varepsilon = 2\varepsilon_{0.}$ | 7 | 4 | 3 |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| b.   | Derive the expression of magnetic field intensity at a point due to a current element by using Biot-savart's law.                                                                                                                     | 8 | 3 | 3 |
|      | (OR)                                                                                                                                                                                                                                  |   |   |   |
| c.   | Derive the expression for displacement current.                                                                                                                                                                                       | 7 | 4 | 2 |
| d.   | State faradays law of electromagnetic induction and derive the Maxwell's equation in time varying for using transformer emf.                                                                                                          | 8 | 4 | 2 |

--- End of Paper ---