7

CO-3

K2

K3

K1

K1

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester - Regular) Examinations, December - 2022

21BECPC23001 – Analog Electronic Circuits

Time: 3 hrs

(ECE) Maximum: 70 Marks **Answer ALL questions** (The figures in the right hand margin indicate marks) PART – A $(2 \times 5 = 10 \text{ Marks})$ CO #Blooms Q.1. Answer ALL questions Level CO-1 K1 Why BJT is a current-controlled device whereas FET is a voltage-controlled device? CO-2 K3 Determine the value of g_m of JFET. CO-1 K1 What do you mean by slew rate of an OPAMP? CO-2 K2 Neatly sketch and label DC load line of an Emitter stabilized bias circuit with Vcc = 12V, $RC = 1.5 K\Omega$, $RE = 1.8 K\Omega$, $RB = 82 K\Omega$. CO-3 K1 Draw the drain and transfer V-I characteristic of N-Channel JFET. PART – B $(15 \times 4 = 60 \text{ Marks})$ CO # Marks Blooms Answer ALL the questions Level CO-1 K1 Define biasing of BJT and explain need for biasing. 8 CO-1 K2 For a Emitter Stabilized bias circuit with VCC = 16V, RB = 470 KΩ, 7 RC = 2.7 K Ω , β = 90.Determine: i) S_(ICO) ii) S_(VBE) iii) S(β) using β (T1) as specified in the diagram and β (T2) as 25% more. iv) Determine the net change in I_C if a change in operating conditions results in I_{CO} increasing from 0.2 to 10 V_{BE} drops from 0.7 to 0.5 V, and increases 25%. (OR)CO-3 K2 c. Draw the circuit of voltage divider bias. Take the circuit parameter as, $V_{CC} = 10V$, 8 $R_2 = 17K\Omega$, $R_1 = 83K\Omega$, $R_C = 2K\Omega$, $R_E = 0.5K\Omega$, find I_B , I_C , V_{CE} , V_C , V_E . The

А	Evolain	the self-biasing of a JFET.	
(].	Explain	the sell-blasing of a JFET.	

transistor has β =100 and V_{BE} = 0.7V.

CO-2 8 Show that the trans-conductance g_m of a JFET is related to the drain current I_{DS} 3.a. given by $g_m = \frac{Z}{|V_P|} \sqrt{I_{DSS} I_{DS}}$ where the symbols have their usual meanings

CO-2 7 b. Determine the following for the voltage divider biasing of JFET (i) IDQ and VGSQ. (ii) VD. (iii) VS. (iv) VDS. If $R_1 = 2.1M\Omega$, $R_2 = 270K\Omega$, $R_D = 2.4 \text{ K}\Omega$, $R_S = 1.5 \text{ K}\Omega$, $I_{DSS} = 8\text{mA}$, $V_P = -4V$.

(OR)

- K2 CO-1 c. Draw an emitter follower circuit. Draw its re equivalent circuit. Derive its voltage 8 gain.
- CO-3 K1 7 d. Draw the ac equivalent circuit for self-bias configuration $V_{GS} = 2.6$ V and $I_D = 2.6 \text{ mA}$, with $I_{DSS} = 8 \text{ mA}$ and $V_P = 6 \text{ V}$.

(i) Determine g_m. (ii) Find Zi (iii) Calculate Zo. (iv) Calculate Av.

- CO-2 K1 4.a. Design a OPAMP based analog circuits which will give an output voltage, 8 Vo = 0.5 V1 - 2 V2 + 0.25 V3, where V1, V2 and V3 are three input voltages.
 - CO-3 Write short notes on integrator and differentiator using Op-Amp. 7 b.

a.

b.

c.

d.

e.

2. a.

b.

Reg.

No

(OR)				
c.	Derive the conditions of oscillation in a Wein-bridge oscillator.			K1
d.	Derive the conditions for oscillation in a RC phase shift oscillator. What type of waveform does it generate?		CO-1	K1
5.a.	List the characteristics of an ideal op-amp. Draw the equivalent circuit diagram.			K2
b.	Derive an expression for the voltage gain of an instrumentation amplifier. What are its applications?		CO-2	K1
	(OR)			
c.	Explain the concept of negative feedback. Also derive a term for gain with	8	CO-3	K2
	feedback.			
d.	Draw a neat circuit diagram of push pull class B amplifier. Explain its working	7	CO-2	K1
	End of Paper			