Dam					
Reg.					
0					
No					
INU					

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Third Semester - Regular) Examinations, December – 2022

21BCSBS23001 – Discrete Mathematics

(CSE)

Maximum: 70 Marks

AR 21

Time: 3 hrs

PART – A

Answer ALL questions (The figures in the right hand margin indicate marks)

 $(2 \times 5 = 10 \text{ Marks})$

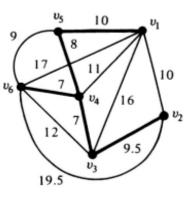
- Blooms Q.1. Answer ALL questions CO # Level CO1 K1 Write the converse, inverse, contra positive of "If you work hard then you will be rewarded" a. Discuss the form does a particular solution of the liner homogeneous recurrence relation CO2 Κ2 b. $a_n = 6a_{n-1} - 9a_{n-2} + n3^n$ have? State the necessary and sufficient condition for a non-empty subset H of a group G to be a CO2 К3 c. subgroup of G. К2 d. A simple graph G has 2 vertices of degree 2, 3 Vertices of degree 4 and 1 vertex of degree CO3 4 then how many edges it has. К2
- e. Suppose that a connected planer graph has 30 edges. If a planer representation of this graph ^{CO4} ^{K2} divide the plane into 20 regions, how many vertices does this graph have?

PART – B

(15 x 4 = 60 Marks)

Answer ALL the questions			CO #	Blooms Level					
2. a.	Translate each of these statements into logic expressions using predicates, quantifiers and logical connectives	8	CO1	КЗ					
	 i. No one is perfect. ii. Not everyone is perfect. iii. All your friends are perfect iv. At least one of your friends is perfect. v. Everyone is your friend and is perfect. vi. Not everybody is your friend or someone is not perfect. 								
b.	Verify the statements $(p \to q) \to (r \to s)$ and $(p \to r) \to (q \to s)$ are logically equivalent or not.	7	CO1	К2					
	(OR)								
c.	Translate the following statements in to logical expressions using nested quantifiers.	8	CO1	К2					
	 i. Sum of two positive integers is always positive. ii. Every real number except zero has a multiplicative inverse. iii. Everyone has exactly one best friend. iv. If a person is female and is a parent, then this person is someone's mother. 								
d.	. Prove by method of induction that sum of cubes of three consecutive positive integers are divisible by 9.			К2					
3.a.	Find the solution of the recurrence relation $a_n = 4a_{n-1} - 3a_{n-2} + 2^n + n + 3$ with $a_0 = 1$ and $a_1 = 4$	8	CO2	К2					

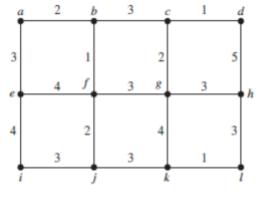
b.	Use generating function to solve $a_n = 8a_{n-1} + 10^{n-1}$ with $a_1 = 9$	7	CO2	К3
	(OR)			
c.	Use Warshall's algorithm to find the transitive closure of the relation $R = \{(b,c), (b,e), (c,c), (d,a), (e,b), (e,c)\}$ on A = { a,b,c,d,e}	8	CO2	К2
d.	Construct the Hasse Diagram of the poset ({2,4,5,10,12,20,25}, /) and also find	7	CO2	К2
	 i. Maximal and Minimal elements. ii. l.u.b (4,5) iii. Greatest and least element if any. iv. Is it lattice? Justify! 			
4.a.	i. In a distributive lattice, if $b \wedge c = 0$ then show that $b \leq c$. ii. Show that every distributive lattice is modular.	8	CO3	КЗ
b.	State and prove Lagrange's theorem of group theory.	7	CO3	К3
	(OR)			
c.	Find the disjunctive and conjunctive normal forms of the Boolean expression. $E(x_1, x_2, x_3) = \overline{(x_1 \wedge x_2)} \vee (\overline{x_1} \vee x_3)$		CO3	КЗ
d.	Prove that the sub group of a cyclic group is cyclic.			К3
5.a.	. Prove that a tree with n vertices has n-1 edges.			К3
b.	. Construct the minimum spanning tree using Prims algorithm.			К2



c. State and prove Euler formula for planner graph.

8 CO4 K3 7 CO4 K2

d. Construct the minimum spanning tree using Kruskal's algorithm.



--- End of Paper ---