	r		 			1
Reg.						AR 21
1005.						
No						

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech(Third Semester - Regular) Examinations, December - 2022

21BCHPC23001- HEAT TRANSFER

(Chemical Engineering)

Maximum: 70 Marks

Time: 3 hrs

PART – A

Answer ALL questions (The figures in the right hand margin indicate marks)

(2 x 5 = 10 Marks)

Q.1. Answer ALL questions			Blooms Level
a.	Write the different modes of heat transfer.	1	1
b.	Write conductive resistance in a cylindrical pipe whose thermal conductivity is K and length is L and d_i and d_o are the inside and outside diameters.	1	1
c.	Define Biot and Fourier number.	1	1
d.	Define capacity and steam economy in evaporator.	3	1
e.	State Newton's Law of Cooling.	2	1

PART - B

(15 x 4 = 60 Marks)

Answ	Marks	CO #	Blooms Level	
2. a.	A pipe 7 cm outside diameter is lagged with a 6 cm layer of asbestos (conductivity = 0.14) and a 5 cm layer of cork (conductivity = 0.04). If the temperature of the outer surface of the pipe is 160° C and the temperature of the outer surface of the heat loss in kcal/hr.m.	8	1	2
b.	Derive the general expression for the heat transfer by conduction through a plane wall	7	1	2
	(OR)			
c.	A 50 cm \times 30 cm copper slab of 6.25 mm thick has a uniform temperature of 300 ^o C. It is suddenly dipped into the liquid at 36 ^o C whose heat transfer coefficient is 90 W/m ² ^o C. Calculate the time required for the slab to reach the temperature 108 ^o C. Properties of copper slab : Density= 9000kg/m ³ , Specific heat=0.38 KJ/kg ^o C, Thermal conductivity=370 W/m ^o C	8	1	2
d.	Derive the expression for temperature profile in lumped parameter model	7	1	2
3.a.	Explain convection heat transfer phenomena.	8	2	2
b.	Differentiate between drop-wise and film-wise condensation.	7	2	3
	(OR)			
c.	A vertical flat plate is 600 m in height and is exposed to steam at atmospheric pressure. If the surface of the plate is maintained at 60°C, then calculate the total heat transfer rate and rate of steam condensation. Data: Saturation steam temperature = 100°C Latent heat of vaporization(h _{fg}) = 2257 KJ/Kg $\rho_v = 0.596 \text{ Kg/m}^3$ The properties of saturated vapour at the mean film temperature are: $\mu = 355.3 \times 10-6 \text{ Ns/m}^2$ $\rho = 971.8 \text{ Kg/m}^3$ $k = 67.413 \times 10-2 \text{ w/m}^{\circ}\text{C}$	8	2	2

d.	Discuss the effect of non-condensable gas presence in condensation	7	2	2
4.a.	Derive Nusselt equation by Dimensional analysis for forced convection heat transfer.	8	2	2
b.	Mention the different stages boiling phenomena with the help of boiling curve	7	2	1
	(OR)			
c.	Explain the types of feeding in Multiple effect evaporators with neat sketch.	8	3	2
d.	Write the expression for effectiveness of heat exchanger for Parallel Flow and Counter Flow. Explain the NTU and R used in those expression.	7	3	3
5.a.	Derive the LMTD expression for Parallel flow heat exchanger	8	3	2
b.	Find LMTD for PF and CF arrangement. T_{hi} =80, T_{h0} =50, T_{ci} =30, T_{co} =40,	7	3	1
	(OR)			
c.	Crude oil flows at the rate of 1100 kg/hr through the inside pipe of a double pipe heat exchanger and is heated from 28° C to 86° C. The heat is supplied by kerosene initially at 180° C flowing through the annular space. If the temperature of approach (minimum temperature difference) is 10° C, determine the heat transfer area for co-current flow and the kerosene flow rate. Data: C _P for crude oil and kerosene = 0.51 and 0.62 kcal/kg. ^o C andU ₀ = 412 kcal/hr.m ^{2.o} C	8	3	2
d.	Mention the basic laws used in radiation heat transfer with their statements.	7	4	1

--- End of Paper ---