| Reg. |  |  |  |  |  | AR 21 |
|------|--|--|--|--|--|-------|
| No   |  |  |  |  |  |       |



## **GIET UNIVERSITY, GUNUPUR – 765022**

B. Tech (Third Semester - Regular) Examinations, December - 2022

21BCHPC23002 - Fluid Mechanics

(Chemical Engineering)

Maximum: 70 Marks

Time: 3 hrs

PART - A

## **Answer ALL questions** (The figures in the right hand margin indicate marks)

(2 x 5 = 10 Marks)

| Q.1. Answer ALL questions |                                                                                                                           |     |    |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|-----|----|
| a.                        | 2 litre of crude oil weighs 19.2N. Calculate specific weight, density and specific gravity.                               | CO1 | K1 |
| b.                        | Diffentiate uniform and non-uniform flow of fluid.                                                                        | CO2 | K1 |
| c.                        | What is the relationship between the drag coefficient and Reynolds number in the Stoke's law range (Reynolds number < 1)? | CO3 | K2 |
| d.                        | How are the repeating variables selected for dimensional analysis?                                                        | CO3 | K2 |
| e.                        | Define slip.                                                                                                              | CO4 | K1 |

## PART – B

## (15 x 4 = 60 Marks)

| Answe | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO # | Blooms<br>Level |    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|----|
| 2. a. | A vertical cylinder of diameter 15cm rotates concentrically inside another cylinder of diameter 15.1cm. Both the cylinders are 25cm high. The space between the cylinders is filled with a liquid. Determine the viscosity of the liquid if a torque of 12Nm is required to rotate the inner cylinder at 100rpm.                                                                                                                                                                                               | 8    | CO1             | K1 |
| b.    | A Differential manometer is connected at the points A and B at the centre of two pipes. The pipe A (left limb) contains a liquid of specific gravity 1.5 while pipe B (right limb) contains a liquid of specific gravity 0.9. The pressure at A and B are 1 kgf/cm <sup>2</sup> and 1.8kgf/cm <sup>2</sup> respectively. Find the difference in level of mercury in the differential manometer, if point A is 3m above B and 5m above the mercury in its own limb. B is 2 m above the mercury level in limb A. | 7    | CO1             | K1 |
|       | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                 |    |
| c.    | Two plates are placed at a distance of 0.15mm apart. The lower plate is fixed while the upper plate having surface area $1m^2$ is pulled at 0.3m/s. Find the force and power required to maintain this speed, if the fluid separating them is having viscosity 1.5poise.                                                                                                                                                                                                                                       | 8    | CO1             | K1 |
| d.    | Derive Pascal's law.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7    | CO1             | K1 |
| 3.a.  | Water is flowing through a taper pipe of length 40m having diameters 45cm at upper end and 30cm at lower end, at the rate of 75lps. The pipe has a slope of 1 in 20. Find the pressure at lower end if pressure at higher end is $26N/cm^2$ .                                                                                                                                                                                                                                                                  | 8    | CO2             | K2 |
| b.    | Explain in details about pressure drag and friction drag on a submerged body.                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7    | CO3             | K2 |
|       | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                 |    |
| c.    | A kite weighing 7.848N has an effective area of $0.8m^2$ . It is maintained in air at an angle of $10^0$ to the horizontal. The string attached to the kite makes an angle of $45^0$ to the horizontal and at this position the value of co-efficient of drag and lift are 0.6 and 0.8 respectively. Find the speed of the wind and the tension in the                                                                                                                                                         | 8    | CO3             | К2 |

string. Take the density of air as 1.25kg/m<sup>3</sup>.

| d.   | Water flows through a pipe AB 2.8 m diameter at 4m/s and then passes through a pipe BC 2m diameter. At C, the pipe branches. Branch CD is 1.2m diameter and carries one-third of flow in AB. The flow velocity in branch CE is 3m/s. Find the volumetric flow rate of AB, velocity in CD and diameter of CE. | 7  | CO2 | K2 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|----|
| 4.a. | The variables controlling the motion of a floating vessel through water are the drag force F, speed v, length l, density and dynamic viscosity of water and acceleration due to gravity g. Derive an expression for F by dimensional analysis.                                                               | 10 | CO3 | K3 |
| b.   | Describe the mechanism of fluidization.                                                                                                                                                                                                                                                                      | 5  | CO4 | K2 |
|      | (OR)                                                                                                                                                                                                                                                                                                         |    |     |    |
| c.   | Derive the boundary layer formation of fluid in a flat plate with neat sketch.                                                                                                                                                                                                                               | 5  | CO2 | K1 |
| d.   | A horizontal venturimeter with inlet diameter 30cm and throat diameter 15cm is used to measure the flow of oil of specific gravity 0.8. The discharge of oil through venturimeter is 50lps. Find the reading of oil-mercury differential manometer.                                                          | 10 | CO2 | K2 |
| 5.a. | Explain the construction and working principle of rotameter with neat sketch.                                                                                                                                                                                                                                | 8  | CO4 | K2 |
| b.   | Write the working of centrifugal pump with neat sketch.                                                                                                                                                                                                                                                      | 7  | CO4 | K2 |
|      | (OR)                                                                                                                                                                                                                                                                                                         |    |     |    |
| c.   | Differentiate between pump and compressor.                                                                                                                                                                                                                                                                   | 8  | CO4 | K2 |
| d.   | Explain in details about the types of fittings.                                                                                                                                                                                                                                                              | 7  | CO4 | K2 |
|      |                                                                                                                                                                                                                                                                                                              |    |     |    |

--- End of Paper ---