QP Code: RO20MTECH199

GIET UNIVERSITY, GUNUPUR - 765022

M. Tech (Second Semester Examinations) - October' 2021

MPCCH2020 – ADVANCED REACTION ENGINEERING AND REACTOR DESIGN

(Chemical Engineering)

Time: 2 hrs

(The figures in the right hand margin indicate marks)

PART – A

- Q.1. Answer ALL questions
 - a. Differentiate space time and space velocity.
 - b. The pyrolysis of ethane proceeds with an activation energy of about 300 kJ/mol. How much faster is the decomposition at 650° C than at 500^{0} C?
 - What is pseudo first order reaction? c.
 - d. What are the parameters to be considered for design of reactors?
 - e. Define activation energy and write its significance.

Reg.

No

- f. Draw the schematic graph of concentration vs time for zero order reaction.
- Write the comparison of single reaction and multiple reaction in terms of product distribution. g.
- h. What is the significance of Damkohler number?
- i. What is effectiveness factor? Write its importance in cylindrical pore.
- j. For the complex reaction with stoichiometry $A + 3B \rightarrow 2R + S$ and with second order rate expression $-r_A = k_1[A][B]$. What is the relation between r_A , r_B , r_R .

PART – B

Answer ANY FIVE questions

- 2. Derive the performance equation of irreversible first order reaction for constant volume (6)batch reactor. Show in the graph to calculate rate constant by using this equation.
- 3. In a certain Kinetic study, the rate constants were found to vary with temperature in the (6)following manner.

K x 10^3 (min ⁻¹)	:	4.15	26.8	114	246
T (K)	:	573	600	623.5	635

Evaluate the activation energy & Arrhenius constant.

The partial pressure of Azomethane CH₃N₂ CH₃ was observed as a function of time at 4. (6)5000K, with results given below. Confirm that, the decomposition;

 \rightarrow CH₃ CH₃ + N₂ is 1st order in CH₃ N₂ CH₃ and find the rate CH₃ N₂ CH₃constant at this temperature.

Time (Sec)	0	1000	2000	3000	4000
Pressure (mm)	820	572	399	278	194

5. At 600 K the gas phase reaction;

$$\mathbf{K}_1$$

 $C_2 H_4 + Br_2$ \Box C₂ H₄ Br₂, has rate constants K_2

$$K_1 = 500 \text{ m}^1 / \text{K. mol} - \text{hr and } K_2 = 0.032 \text{ hr}^{-1}.$$

If a plug flow reactor is to be fed 600 m³ / hr of a gas containing 60% Br₂ and 30%

Maximum: 50 Marks

 $(2 \times 10 = 20)$

AR 19

Marks

 $(6 \times 5 = 30 \text{ Marks})$

(6)

 C_2 H₄ and 10% inerts by volume at 600 0 K and 1.5 bar. Calculate

- i. the maximum possible conversion of C_2H_4 in to C_2H_4 Br₂, make a trial around 0.977.
- ii. the reactor volume required to obtain 60% conversion
- 6. Derive the performance equation for plug flow reactor for variable volume with first order (6) kinetics.

(6)

7. For the parallel decomposition of A, where S is desired,

$$A \xrightarrow{\mathbf{R}, \mathbf{r}_{R} = 1} \\ A \xrightarrow{\mathbf{S}, \mathbf{r}_{S} = 2 C_{A}} \\ T, \mathbf{r}_{T} = C_{A}^{2}}$$
 ******** with $C_{A0} = 2$

What maximum Cs we may expect in isothermal operations:

- (a) In a mixed reactor.
- (b) In a plug flow reactor.
- The elementary liquid phase reaction is carried out in a system of two reactors in series (6) having volume of PFR and CSTR are 2 lit and 3 lit respectively. Initial concentration of reactant is 0.6 mol/lit and molar flow rate of 1 mol / sec. Find out which combination is better either PFR followed by CSTR or CSTR followed by PFR.

--- End of Paper ---