Time: 2 hrs

PART – A

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc (Fourth Semester) Examinations, May - 2021

MTPE 404 - OPTIMIZATION TECHNIQUES-II

(MATHEMATICS)

Maximum: 50 Marks

(The figures in the right hand margin indicate marks.)

Reg. No

Q.1. Answer ALL the questions

- a. State the conditions under which a quadratic programming problem will have unique optimal solution.
- b. State strong duality theorem.
- c. Define generalized inverse of a matrix A.
- d. Write any three applications of quadratic program.
- e. State the concept used in the reduced gradient method.
- State the requirements for using the Kelly's cutting plane method. f.
- What is signomial and when a signomial is said to be posynomial? g.
- h. State Bellman's optimality. Principle.
- State weak duality theorem. i.
- What is a compementarity problem? j.

PART - B

Answer ANY FIVE questions

- 2. Apply Wolfe's method to solve the quadratic programming problem: Minimize $f(x_1, x_2) = -10x_1 - 25x_2 + 10x_1^2 + x_2^2 + 4x_1x_2$ (6) Subject to $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 9$ and $x_1, x_2 \ge 0$
- 3. Explain in detail the Beale's Algorithm for solving quadratic programming problem. (6)
- 4. Explain Lemke's Complementary Pivoting Algorithm.
- 5. Let A be a matrix of order $m \ge n$ and rank(A) = r, then prove that a g inverse A^- (6) exist and also rank $(A^{-}) \ge rank (A)$.
- 6. Use the Frank and Wolfe algorithm to Minimize $f(x) = x_1^2 + 4x_2^2$ subject to (6) $x_1 + 2x_2 - x_3 = 1, -x_1 + x_2 + x_4 = 0, x_i \ge 0$ (*i* = 1, 2, 3, 4)
- 7. Prove that a solution point x^* is a K-T point of the nonlinear programming problem Minimize f(x), subject to $Ax = b, x \ge 0$, where $x \in \mathbb{R}^n, b \in \mathbb{R}^m$ and $A = (a_{ij})$ is (6) an $m \ge n$ matrix.
- 8. A can is to be made in the form of right circular cylinder to contain at least V cubic inches (6) of oil. What dimensions of the can will require the least amount of material?
- Find an expression for maximum height attained by projectile using dynamic program. 9. (6)

--- End of Paper ---

 $(6 \times 5 = 30 \text{ Marks})$

Marks

(6)