QP Code: RS20MSC141	Reg.						AR 20
	No						

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Second Semester) Examinations, September - 2021

20PHPC201 – Classical Electrodynamics

(Physics)

Time: 2 hrs Maximum: 50 Marks

(The figures in the right hand margin indicate marks.) $PART-A \label{eq:partial}$

Q.1. Answer *ALL* questions

 $(2 \times 10 = 20 \text{ Marks})$

- a. Explain different types of instabilities in plasma.
- b. What do you mean by skin depth?
- c. Write down the boundary conditions for electromagnetic field vectors.
- d. What are Alfven waves?
- e. What is the physical significance of dispersion relation?
- f. What is Rayleigh scattering?
- g. Define scattering cross-sections.
- h. What is the significance of induction part of radiation electric field?
- i. What is kink instability?
- j. What is the lowest mode physically possible in TM mode?

PART - B (6 x 5 = 30 Marks)

Answer ANY FIVE the questions				
2.	Derive electromagnetic wave equations for potentials and find out the solution by Fourier analysis method.	(6)		
3.	Discuss the propagation of EMW in a rectangular wave guide in TE mode.	(6)		
4.	Find out the expression for fields due to a uniformly moving electron.	(6)		
5.	Derive Larmor formula.	(6)		
6.	Discuss the behaviour of plasma in a magnetic field.	(6)		
7.	Derive magneto hydrodynamics equation for Plasma.	(6)		
8.	Discuss the entire process Thomson scattering with suitable mathematical treatment.	(6)		
	End of Paper			