	1						
OP Code: RS20MSC171	Reg.						AR 20
Q1 Code: Rb20MbC1/1	rteg.						7 HC 20
	No						

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Second Semester) Examinations, September - 2021

20PHPC204 – QUANTUM MECHANICS-II

(Physics)

Time: 2 hrs Maximum: 50 Marks

(The figures in the right hand margin indicate marks.) $PART-A \label{eq:partial}$

Q.1. Answer *ALL* questions

 $(2 \times 10 = 20 \text{ Marks})$

- a. Write three dimensional Schrödinger equation in spherically polar coordinates?
- b. Express the radial equation for a particle moving in a spherically symmetric field?
- c. Estimate the normalized radial wave function for Hydrogen atom for n=1?
- d. What are different types of approximate methods used in QM?
- e. A particle of charge 'q' and mass 'm' is moving with a one dimensional harmonic potential of frequency 'w' is subjected to a weak electric field 'E' in the x-direction. Find the first order correction of energy?
- f. Explain Bohr-summerfield quantisation rule?
- g. Differentiate between Linear Stark effect and Quadratic Stark effect?
- h. Discuss about the few assumptions made in the scattering theory?
- i. Define scattering amplitude, scattering cross section and total scattering cross section?
- j. What do you mean by symmetric and anti-symmetric wave function?

PART - B (6 x 5 = 30 Marks)

Answe	er ANY FIVE questions	Marks
2.	Solve the radial part of the Schrodinger's wave equation for Hydrogen atom to obtain the energy Eigen values?	(6)
3.	Give the theory of time independent perturbation for degenerate systems and explain the normal Zeeman effect?	(6)
4.	Explain variational method and evaluate the energy level of normal state of Helium atom using variational method?	(6)
5.	Apply Born approximation theory, to derive the differential cross section for scattering by a screened Coulomb potential?	(6)
6.	State and prove the Optical theorem?	(6)
7.	Derive the total scattering cross section by a Hard sphere? Discuss its low energy limit case?	(6)
8	Discuss about the symmetric and anti-symmetric wave function?	(6)

--- End of Paper ---