

Time: 2 hrs

AR 20

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc. (Second Semester) Examinations, September - 2021

20MTPC201 – Algebra II

(Mathematics)

Maximum: 50 Marks

 $(2 \times 10 = 20 \text{ Marks})$

The figures in the right-hand margin indicate marks All the symbols have their usual meaning PART- A

- Q.1: Answer ALL questions
 - a. If dim_{*F*} V = m, then what is the value of dim_{*F*} Hom(V, V) and dim_{*F*} Hom(V, F)?
 - b. If $v \in V$, then define the norm of v, and prove that $\|\alpha v\| = |\alpha| \|v\|$.

Reg.

No

- c. If G be the group of automorphisms of K, then define the fixed field of G, and what is its relation with K?
- d. Define the solvability of a group G.
- e. Define the characteristic root and characteristic vector of $T \in A(V)$.
- f. If T, $S \in A(V)$ and S is regular, then show that T and STS^{-1} have the same minimal polynomial.
- g. Define the similarity of linear transformations $S, T \in A(V)$.
- h. If $T \in A(V)$ is nilpotent, then define the index of nilpotence.
- i. If $T \in A(V)$ and if $S \in A(V)$ is regular, then show that $r(T) = r(STS^{-1})$.
- j. If (vT, vT) = (v, v) for all $v \in V$, then what is the nature of T?

PART-B

Answer ANY FIVE questions

$(6 \times 5 = 50 \text{ Marks})$

- 2. If V and W are of dimension m and n, respectively, over F, then show that Hom(V, W) is of dimension mn over F.
- 3. If $u, v \in V$, then show that $|(u, v)| \le ||u|| ||v||$.
- 4. If K is a finite extension of F, then prove that G(K, F) is a finite group and its order, o(G(K, F)) satisfies $o(G(K, F)) \leq [K : F]$.
- 5. Show that S_n is not solvable for $n \ge 5$ followed by the proof of "Let $G = S_n$, where $n \ge 5$; then $G^{(k)}$ for $k = 1, 2, \cdots$, contains every 3-cycle of S_n .
- 6. If A is an algebra, with unit element, over F, then show that A is isomorphic to a subgroup of A(V) for some vector space V over F.
- 7. (a) Define the trace of *A*, and prove that for *A*, $B \in F_n$ and $\lambda \in F$,

i.
$$tr(\lambda A) = \lambda tr A$$

- $ii. \quad tr(A+B) = tr A + tr B$
- iii. tr(AB) = tr(BA).
- 8. If M, of dimension m, is cyclic with respect to T, then the dimension of MT^k is m-k for all $k \le m$.