

Time: 2 hrs

Reg. No

M. Sc. (Second Semester) Examinations, September - 2021

20MTPC202 – Advanced Calculus

(Mathematics)

Maximum: 50 Marks

(The figures in the right hand margin indicate marks.) PART – A

Q.1. Answer ALL questions

- a. Prove that $D_{-\beta} f(p_0) = -D_{\beta} f(p_0)$
- b. State the Taylors theorem for two variables.
- c. Find the partial derivative of function $f(x,y,z) = x^2y + y^3 \sin z^2$, Find f_1 , f_2 , f_3 .
- d. Compute Df for each of the following functions at the given point $f(x,y) = x \sin xy$ at $(\frac{\pi}{4}, 2)$
- e. Find the inverse transformation of T: u=x + y, $v = 2xy^2$
- f. Find the linear function L such that L(1,0,0)=2, L(0,1,0)=-1 L(0,0,1)=2
- g. Define Functional Dependent
- h. What is the significance of Gauss divergence theorem?
- i. Find the unit normal vector to the right circular cylinder
- j. Change the order of the integration $\int_{0}^{2} \int_{0}^{y} f(x, y) dx dy$

PART – B (6 x 5 = 30 Marks)

Answer ANY FIVE questions

- 2. State and prove mean value theorem.
- 3. (i) If $F(x,y,z,w)=x^2y xz 2yw^2$ find the derivative of F at (1,1,-1,1) in the direction 3+3 $\beta = (4/7, -4/7, 1/7, -4)$
 - (ii) Compute D_f for each of the following functions at the given point $f(x,y) = x^2yz+3xz^2$ at (1,2,-1)
- 4. Let T be a transform from \mathbb{R}^n in to \mathbb{R}^m , which is of class c^{I} in an open set D and suppose (6) that $J(p) \neq 0$ for each $p \in D$ then T is locally one to one in D.
- 5. State and prove implicitly function theorem.
- 6. Let L be a linear transform of R³ to R³ describe by T : u=f(x,y,z) ,v= g(x,y,z), (6) w= h(x,yx,z), which of class c^I in an open set D and suppose that at each point p∈ D. The differentiable dT has rank 2. Then T -> D i.e T maps D onto a surface in u,v,w space and the function f,g,h are functional dependent in D

7. Using Gauss divergence theorem, evaluate the integral $\iint_{s} F.ndA$ of $F = [x^3, y^3, z^3]$ and (6)

S is the sphere $x^2 + y^2 + z^2 = 9$

By using Greens theorem evaluate $\int_{C} F(r) dr$ where $F = \frac{e^{y}}{x}\hat{i} + e^{y}\ln x + 2x\hat{j}$, where

 $R: 1 + x^4 \le y \le 2$

8.

--- End of Paper ---

(2 x 10 = 20 Marks)

Marks

(6)

(6)

(6)