QP Co	ode: RM20MSC087 Reg. No	AR 2
	GIET UNIVERSITY, GUNUPUR – 765022 M. Sc(First Semester) Examinations, May – 2021 20MTPC101– ALGEBRA – I (Mathematics)	
Гime: 2	hrs Maximum: 5	0 Marks
PART	(The figures in the right hand margin indicate marks.) C - A (2 x 10 = 20 I	Marks)
Q.1. A	answer ALL questions	
a.	Obtain the orbits and cycles of the permutation	
b.	State Cayley's theorem	
c.	Define conjugacy relation	
d.	Define a maximal ideal	
e.	Define an Euclidean Ring	
f.	Define primitive polynomial	
g.	Define a vector space	
h.	Define Linear span	
i.	State Remainder theorem	
j.	Define:	
	(i) Extension of a field and degree of such an extension(ii) finite extension	
PART	$(6 \times 5 = 30 \text{ I})$	Marks)
Answe	er ANY FIVE the questions	Marks
2.	If G is a group, then prove that $A(G)$, the set of automorphisms of G is also a group.	(6)
3.	Show that conjugacy is an equivalence relation	(6)
4.	State and Prove Sylow's theorem	(6)
5.	State and Prove factorization theorem	(6)
6.	Given two polynomials $f(x)$ and $g(x) \neq 0$ in $F[x]$ then prove that there exist two polynomials $t(x)$ and $r(x)$ in $F[x]$ such that $f(x) = t(x)g(x) + r(x)$ where $r(x) = 0$ (or)	(6)

7. If A and B are subspaces of a finite dimensional vector space V prove that A+B is also (6) finite dimensional and $\dim(A+B) = \dim(A) + \dim(B) - \dim(A \cap B)$

 $\deg r(x) < \deg g(x)$

8. If K is a finite extension of F and L is a finite extension of K, then prove that L is a finite (6) extension of F and [L: F]=[L: K][K: F]

--- End of Paper ---