QP Code: RM20MSC089	Reg.						AR 20
	No						

GIET UNIVERSITY, GUNUPUR - 765022

M. Sc (First Semester) Examinations, May – 2021

20MTPC 102 – TOPOLOGY

(MATHEMATICS)

Maximum: 50 Marks

 $(2 \times 10 = 20 \text{ Marks})$

(The figures in the right hand margin indicate marks.)

Q.1. Answer ALL questions

- a. Define topological space.
- b. Show that in a topological space if CF is an open set, then F is a closed set.
- c. Define connected set.
- d. State Heine-Borel Theorem.
- e. Define T_0 space.
- f. Define countable open base at a point in a topological space.
- g. Define limit of a sequence of points in a topological space.
- h. Define completely regular space.
- i. Define projection map.
- j. State Urysohn's metrization theorem.

PART – B

Answer ANY FIVE questions

- 2. If $x \notin F$, where F is a closed subset of a topological space (X, \mathfrak{I}) , then show that there (6) exists an open set G such that $x \in G \subseteq CF$.
- 3. Show that if f is a homeomorphism of a topological space X onto another topological (6) space X^* then f maps every isolated subset of X onto an isolated subset of X^* .
- 4. In a T_1 space X, show that a point x is a limit point of a set E if and only if every open set (6) containing the point x contains an infinite number of distinct points of E.
- 5. If X and Y are two topological spaces, then show that $X \times Y$ is dense-in-itself if and only (6) if at least one of the spaces X and Y is dense-in-itself.
- 6. Show that every closed subset of a compact space is compact.
- 7. If $\langle x_n \rangle$ is a sequence of distinct points of a subset *E* of a topological space *X*, which (6) converges to a point *x* in *X*, then show that *x* is a limit point of *E*.
- 8. Let A, B, E be three subsets of a topological space (X, \mathfrak{I}) . Show that (6)
 - (i) $d(\phi) = \phi$
 - (ii) if $x \in d(E)$ then $x \in d(E \setminus \{x\})$.

--- End of Paper ---

Time: 2 hrs

PART – A

(6 x 5 = 30 Marks)

arke)

Marks

(6)