Reg.					
No					

Time: 2 hrs

GIET UNIVERSITY, GUNUPUR – 765022 M. Sc (Third Semester) Examinations, December' 2020 CE 313 / MTPE 304 – ORDINARY DIFFERENTIAL EQUATIONS (Mathematics)

Maximum: 50 Marks

 $[2 \times 10 = 20]$

 $[6 \times 5 = 30]$

(The figures in the right hand margin indicate marks.)

Part – A

Q.1 Answer all questions from the following

a Determine the order of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^3 + 7\left(\frac{d^2y}{dx^2}\right)^2 \left/ \left(\frac{d^2y}{dx^2} + \frac{d^3y}{dx^3}\right) \right| = y$$

- b Define exact differential equation.
- c Find the Wronskian w(t) of the functions e^t , $\cos t$, $\sin t$.
- d Find the general solution of $x''+2x'+3x=t^4+3$, x(0)=0; x'(0)=1.
- e Find a fundamental matrix for the system x' = Ax,

where $A = \begin{bmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{bmatrix}$, α_1 , α_2 and α_3 are scalars.

- f Let $f(x) = x^{1/2}$ be defined on the rectangle $R = \{(t, x) : |t| \le 2, |x| \le 2\}$. Then prove that f does not satisfy Lipschitz condition in *R*.
- g Write the characteristic equation of the delay equation $x'(t) = ax(t) + bx(t-r), 0 \le t_o \le t < \infty.$
- h Write initial value problem for a linear delay differential equation with constant coefficients having a constant delay r > 0.
- i. Solve the IVP, for $\pi/2 \le t < \pi$, $x' + (\cot x) = 2 \operatorname{cosect}$, $x(\pi/2) = 1$.

j. Find e^{At} when $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Part - B

Answer **ANY FIVE** Questions:

- 2. Prove that the functions 1, t, t^2 ,... t^n , $-\infty < t < \infty$ are linearly independent. (6)
- 3. Prove that there are three linearly independent solutions of the third order (6) equation $x'''+b_1(t)x''+b_2(t)x'+b_3(t)x=0$, $t \in I$ where b_1 , b_2 and b_3 are

AR 19

Reg.					
No					

AR 19

(6)

functions defined and continuous on an interval I.

- 4. Let A(t) be an $n \times n$ that is continuous in t on a closed and bounded interval t. (6) Then prove that there exists a unique solution to the Initial value problem x' = A(t)x, $x(t_o) = x_o$; $(t, t_o \in I)$ on I.
- 5. Show that the matrix $\Phi(t) = \begin{bmatrix} e^{-3t} & te^{-3t} & e^{-3t}t^2 / 2! \\ 0 & e^{-3t} & te^{-3t} \\ 0 & 0 & e^{-3t} \end{bmatrix}$ is fundamental. (6)
- 6. State and Prove Picard's theorem
- 7. Consider the IVP $x' = x^2 + \cos^2 t$, x(0) = 0. Determine the largest interval of (6) existence of its solution.
- 8. Prove that the solution of the IVP x'(t) = ax(t) + bx(t-r), $0 \le t_0 \le t < \infty$ and (6)

 $x(s) = \phi(s), t_0 - r \le s \le t_0$ is bounded if $\int_{t_0 - r}^t \phi^2(s) ds \le \infty, t \ge t_0$

9. Show that the solution of the equation x'(t) + 3x(t-1) = 0 are oscillatory. (6)

--- End of Paper ---