QP Code: RD19MSC041	Reg.						AR 1
	No						

GIET UNIVERSITY, GUNUPUR – 765022

M. Sc (Third Semester) Examinations, December' 2020

CC 301 / MTPC301- FUNCTIONAL ANALYSIS -I (MATHEMATICS)

Time: 2hrs Maximum: 50 Marks

(The figures in the right hand margin indicate marks.)

Q.1. Answer **ALL** the questions

 $(2 \times 10 = 20)$

- a. Give two examples of a normed linear space.
- b. Define bounded linear map.
- c. Show that as a subspace of l^{∞} , the space c_{oo} is not closed.
- d. Define support functional.
- e. State Banach-Steinhaus Theorem.
- f. State Open Mapping Theorem.
- g. If X is a normed space and $A, B \in BL(X)$, then show that $||AB|| \le ||A|| ||B||$.
- h. Define transpose of a bounded linear from a normed space X into a normed space Y.
- i. Define (i) eigen spectrum (ii) eigen value on a normed space X.
- j. Let X be a normed space and X_0 be a dense subspace of X. For $x' \in X'$, let F(x') denote the restriction of x' to X_0 . Show that F is a linear isometry from X' onto X'_0 .

PART - B (6 x 5=30 Marks)

Answer ANY FIVE questions

Marks

6

6

- 2. Show that for $1 \le p < \infty$, the set of scalar sequences l^{∞} is a normed space with respect to the norm $||x||_p = (|x_1|^p + |x_2|^p + \dots)^{1/p}$
- 3. Show that a linear map on a linear space *X* may be continuous with respect to some norm on *X* but discontinuous with respect to another norm on *X*.
- 4. State and prove Hahn-Banach separation theorem.
- 5. Let X be a normed space over a field K with dual X' and $f \in X'$ with $f \neq 0$. Let $a \in X$ 6 with f(a) = 1 and f = 0. Prove that f(a) = 0 if and only if f(a) = 0.
- 6. Let X and Y be normed spaces. If Z is a closed subspace of X, then show that the quotient map $Q: X \longrightarrow X/Z$ is continuous and open.
- 7. State and prove Closed Graph Theorem.
- 8. Let X be a Banach space. Show that $A \in BL(X)$ is invertible if and only if A is bijective.
- 9. If $1 \le p < \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$, then show that the dual space of c_{00} with respect to the norm $\|.\|_p$ is linearly isometric to l^q .

--- End of Paper ---