QPC: RM17001105	
-----------------	--

AR - 17

Reg.	No.
ites.	110.

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, May – 2021 (Eighth Semester)

BMEPE8021 - COMPOSITE MATERIALS

(Mechanical Engineering)

Time: 2 hrs Maximum: 50 Marks

Answer ALL Questions

The figures in the right hand margin indicate marks. Draw neat figures to explain the procedure wherever required. All parts of a question must be answered at one place.

PAR	2T – A: (I	Multiple Choice Questions)	-	$(1 \times 10 = 10 \text{ Marks})$		
Q.1.	Answer	ALL questions				
a.		Major load carrier in dispersion-strengthened composites				
	(i)	Matrix	(ii)	Fiber		
	(iii)	Both	(iv)	Can't define		
b.	Usuall					
	(i)	Matrix	(ii)	Reinforcement		
	(iii)	Can't define	(iv)	Both are of equal strength		
c.	c. Size range of dispersoids used in dispersion strengthened composites					
	(i)	0.01-0.1 μm	(ii)	0.01-0.1 nm		
	(iii)	0.01-0.1 mm	(iv)	None		
d.	d. Rule-of-mixture provides bounds for mechanical properties of particulate composites.					
	(i)	Lower	(ii)	Upper		
	(iii)	Both	(iv)	None		
e. Al-alloys for engine/automobile parts are reinforced to incr				increase their		
	(i)	Strength	(ii)	Wear resistance		
	(iii)	Elastic Modulus	(iv)	Density		
f. Longitudinal strength of fiber reinforced composite is mainly influ				nainly influenced by		
	(i)	Fiber strength	(ii)	Fiber orientation		
	(iii)	Fiber volume fraction	(iv)	Fiber length		
g. Polymeric materials such as epoxies are formed by strong p			ong primary chemical bonds called			
	(i) Metallic bond	(ii)	Van der Waals bond		
	(i	ii) Cross linking	(iv	Covalent bond		
h.	. What fiber factors contribute to the mechanical performance of a composite?					
	(i)	Length	(ii)	Orientation		
	(iii)	Shape	(iv)	All of the above.		
i.	The m	ost common fibers used in advance	ced polymer co	mposites are		
	(i)	glass, steel, and aluminum	(ii)	glass, graphite, and kelvar.		
	(iii)	glass, steel, and kelvar.	(iv)	glass, Carbon, and kelvar		
j.	Which	of the following is correct dimen	sional of flake	composites?		
	(i)	1-Dimensional	(ii)	2-Dimensional		
	(iii) 3-Dimensional	(iv)	4-Dimensional		

PART – B: (Short Answer Questions)

 $(2 \times 5 = 10 \text{ Marks})$

Q.2. Answer ALL questions

- a. Define Composite material with its characteristics.
- b. Distinguish between Foil, Filament and Mono filament.
- c. What are composites, advanced composites and hybrid composites?
- d. Why particle agglomeration occurs in Stir casting process.
- e. Are Natural fiber hydrophobic or hydrophilic? Explain.

PART – C: (Long Answer Questions)

 $(6 \times 5 = 30 \text{ Marks})$

Answer *ANY FIVE* questions

Marks

- 3. What is a composite? Explain clearly the function of reinforcement and matrix phase. How the properties depend on these?
- 4. Clearly distinguish with sketches particulates, flake and fiber reinforced (6) composites based on their geometry.
- 5. Explain Microstructural inhomogeneities and particle agglomeration with respect to Vortex method.
- 6. Explain the Procedure of manufacturing MMCs by Powder Metallurgy process with its advantages & disadvantages and typical applications. (6)
- 7. Explain with neat sketch the procedure of making parts by Squeeze casting process. Write down its advantages, disadvantages and fields of application.
- 8. Explain the situations where bottom pouring method is preferred over lip pouring while casting composites. (6)
- 9. Define interfacial strength for a composite material. Explain the procedure of testing interfacial strength of a FRP composite (6)
- 10. Calculate the longitudinal modulus and tensile strength of a unidirectional composite containing 60 percent by volume of carbon fiber (E_{1f} =294 GPa and σ_{1fu} =5.6 Gpa) in a toughened epoxy matrix (E_{m} = 3.6 Gpa, σ_{mu} =105 Mpa). Compare these values with the experimentally determined values of E_{1} =162Gpa, σ_{1u} =2.94 Gpa. What fraction of the load is carried by fibers in the composite?

--- End of Paper ---