AR - 18 Reg. No. GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022 B. Tech Degree Examinations, November - 2021 (Seventh Semester) **BCHPC 7010 - TRANSPORT PHENOMENA** (Chemical Engineering) Time: 3 hrs Maximum: 100 Marks **Answer ALL Questions** The figures in the right hand margin indicate marks. **PART – A: (Multiple Choice Questions)** (2 x 10 = 20 Marks) Q.1. Answer ALL questions [CO#] [PO#] Control volume analysis is carried out in _____ study. CO1 PO1 a. Macro level Micro level (i) (ii) Molecular level All of these (iii) (iv) Momentum flux has the unit of as CO1 PO1 b. Force (ii) Stress (i) (iii) Heat flux (iv) None of these 1cP is CO1 PO1 c. 0.01 Pa-s 0.1 Pa-s (ii) (i) 0.001 Pa-s 0.0001 Pa-s (iii) (iv) For laminar flow In a pipe the ratio of centre line velocity to average velocity is d. CO1 PO₂ (i) 0 (ii) 0.5 (iii) 1 (iv) 2 The heat transfer by the fin is based on CO₂ PO1 e. conduction (ii) convection (i) (i) Both (i) & (ii) (ii) None of these Schimdt number is used in f. CO3 PO1 Energy transfer (i) Momentum transfer (ii) (iii) All of these Mass transfer (iv) In falling film the velocity distribution is _____ in nature for steady laminar flow of CO1 PO₂ g. Newtonian fluid. Parabolic Linear (ii) (i) Logarithmic (iii) (iv) None of these The velocity distribution is _____ in nature for steady laminar flow of Newtonian fluid CO1 PO2 h. in a pipe. (v) Linear (vi) Parabolic Logarithmic None of these (vii) (viii) i. According to Blassius formula for friction factor, Reynold is related with the power CO4 PO1 (i) 0.25 (ii) 0.5 None of these (iii) 0.33 (iv) Peclet number is j. **CO**4 PO1 Re×Pr (ii) Re/Pr (i) Re+Pr Re-Pr (iii) (iv)

PART – B: (Short Answer Questions)

$(2 \times 10 = 20 \text{ Marks})$

<u>Q.2. Answer <i>ALL</i> questions</u> a. Write mathematical expression for time dependent and time independent fluids.		[CO#]	[PO#]
a.	Write mathematical expression for time dependant and time independent fluids.	CO1	PO1
b.	What is combined momentum flux?	CO1	PO1
c.	Write the Ergun equation for Packed bed Pressure drop.	CO2	PO1
d.	Write Fourier's Law of heat conduction with linear temp. gradient.	CO2	PO1
e.	How thermal conductivity depends on temperature in case of low density gases and liquid?	CO2	PO2
f.	Write the formula for overall heat transfer coefficient for a composite cylinder consisting of four different layers with different thermal conductivities with different thicknesses.	CO2	PO1
g.	Write Fick's Law of diffusion	CO3	PO1

	n. What is friction factor?	CO4	PO1	
j	i. Write the Prandtle formula for friction factor	CO4	PO1	
j	j. Define the Prandtl, Schmidt and Lewis numbers.	CO4	PO1	
	ART – C: (Long Answer Questions) er ALL questions	$(15 \times 4 = 0)$ Marks	60 Mark [CO#]	(S) [PO#]
3.a.	Derive an expression for average velocity profile of power law fluid flow betwe two vertical walls, separated by a distance 2B, taking origin at mid-point of 2 distance.		CO1	PO2
b.	(OR) Derives an expression for average velocity in a circular pipe of radius R and leng L when a Bingham fluid is flowing inside the pipe vertically downward	th 15	CO1	PO2
4.a.	The heat generate per unit volume in a parallel plate is given by $S_v = \mu \left(\frac{v}{b}\right)^2, \frac{w}{m^3}$, 15	CO2	PO2
	where v is the upper plate velocity; b is the distance between two plates. Taking origin at the lower plate with boundary condition $x = 0$, $T = T_0$, and $x = b$, $T = T_b$, Derive an expression for dimensionless temperature difference profile in terms of			
	Brinkman number (Br), where Br = $\frac{\mu v^2}{k(Tb - To)}$			
h	(OR)	of 15	CO2	PO2
b.	Consider a long cylindrical nuclear fuel rod, surrounded by an annular layer aluminium cladding. Within the fuel rod heat is produced by fission; this heat $\left[\begin{array}{c} & & \\ & $	eat	02	102
	source depends on position approximately as, $S_n = S_{n0} \left[1 + b \left(\frac{r}{R_F} \right)^2 \right]$. Here S_{n0} a	nd		
5. a.	<i>b</i> are known constants, and <i>r</i> is the radial coordinate measured from the axis of the cylindrical fuel rod. R_F and R_C are the radius of fission and cladding material. Derive an expression for temperature profile in the fission and cladding material the temperature at the outer surface of cladding is T_0 . In studying the rate of leaching of a substance A from solid particles by a solvent the rate controlling step is diffusion of A from the particle surface through stagnant liquid film thickness δ out into the main stream. The molar solubility A in B is C _{A0} and the main stream is C _{Aδ} .	ls. if B, ¹⁰ a	CO3	PO2
	Show that, i) rate of leaching is $N_{AZ} = \frac{D_{AB}(C_{AO} - C_{A\delta})}{\delta}$			
	ii) Concentration profile is linear with respect to direction of mass flow			
b.	Write the combined mass flux and boundary conditions used to obta concentration profile in solids and in laminar flow. (OR)	ain 5	CO3	PO2
c.	Derive an expression for molar flux in steady state fluid at rest and in laminar flo in terms of partial pressure for non-diffusing case.	bw 10	CO3	PO2
d.	Convert the differential equation into dimensionless form with Reynolds number $K \frac{d^2 v}{dx^2} = \rho \frac{dv}{dt}$	er. 5	CO4	PO2
	Discuss the friction factor in case of pipe flow	10	CO4	PO2
b.	Explain the combined momentum flux. (OR)	5	CO1	PO2
c.	Convert the differential equation into dimensionless form with Reynolds number and Prandtle number. $K \frac{d^2T}{dx^2} = \rho C p \frac{dT}{dt}$	oer 10	CO4	PO2
d.	and Prandtle number. $K \frac{dx^2}{dx^2} = \rho c p \frac{dt}{dt}$ Derive the formula for drag coefficient in case of solid sphere dropping in a fluid. End of Paper	5	CO4	PO2