Time: 3 hrs

AR - 18 F

Reg. No.

GIET M

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

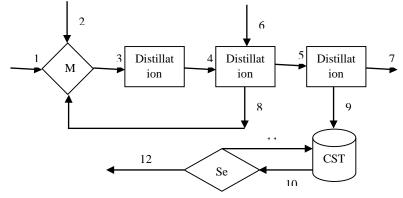
B. Tech Degree Examinations, November – 2021

(Seventh Semester)

BCHPE7030 – Process Modelling and Simulation

(Chemical Engineering)

Maximum: 100 Marks


	Ansv	ver ALL Questions			
		ight hand margin indicate marks.			
PA			x 10 = 20 N	larks)	
		× ×			
Q.1.	Answer ALL questions		[CO#]	[PO#]	
a.	Which of the following is a way of in	mitating a change or event in the wor	ld CO1	PO1	
	to predict what will happen and why?	?			
	(i) Model	(ii) simulation			
	(iii) Law	(iv) Science			
b.	Concentration gradient is the driving		CO1	PO1	
	(i) Heat transfer	(ii) Mass transfer			
	(iii) Fluid mechanics	(iv) None	G 0 4	DOI	
c.	Temperature gradient is the driving f		CO1	PO1	
	(i) Heat transfer	(ii) Mass transfer			
	(iii) Fluid mechanics	(iv) None	G 0 2	DO 1	
d.	For isothermal batch reactor, the valu		CO2	PO1	
	(i) 1 () 20	(ii) 0			
	(iii) 20	(iv) 2	CON	DO1	
e.	For flash drum, how many outlets are		CO2	PO1	
	(i) 2 (ii) 2	(ii) 1 $(iv) A$			
f.	(ii) 3 What is constraint?	(iv) 4	CO3	PO1	
1.	What is constraint?	(ii) Decompoter	005	FUI	
	(i) Response (iii) Principle	(ii) Parameter(iv) Limitation			
a	The value of golden ratio is	(IV) Emilitation	CO3	PO1	
g.	(i)1	(iii) 1.5	005	101	
	(iii) 1.618	(iv) 0.618			
h.	What is the product enthalpy of a pr		at CO1	PO2	
	input is 10J and work performed is 5.		ut ooo		
	(i) 10J	(ii) 15J			
	(iii) 20J	(iv) 30J			
i.	Which of the following is a feature of		CO4	PO1	
	(i) Equipment sizing functions	(ii) Import and export data			
	(iii) Scheduling of batch operations	(iv) All of these			
j.		e a numerical computation used	in CO4	PO1	
5	conjunction with dynamic mathemati				
	(i) Analysis	(ii) Dynamic computation			
	(iii) System simulation	(iv) None			
P				• 、	
PA	PART – B: (Short Answer Questions) (2 x 10 =			= 20 Marks)	
. Ans	swer ALL questions		[CO#]	[PO	
Dif	ferentiate between physical and mathem	atical model.	CO1	РО	
Det	fine lumped model?		CO1	PO	
Wh	nat is activity co-efficient?		CO1	PO	
	-		a a a	DO	
	ite the limitation for Fibonacci search me	ethod.	CO3	PO	

f.	Define global optima with neat sketch.	CO3	PO1
g.	Define constant hold up.	CO2	PO1
h.	Define modularity.	CO4	PO1
i.	What is law of mass action?	CO1	PO1
j.	Name different process simulators for simulation.	CO4	PO1

PART – C: (Long Answer Questions)

(15 x 4 = 60 Marks)

Answer ALL questions		Marks	[CO#]	[PO#]
3. a.	Explain the design equation for a perfectly mixed batch reactor (no inflow &	10	CO1	PO1
	outflow) with first-order isothermal consecutive, simultaneous & reversible reactions.			
b.	Explain the mathematical model for energy equation.	5	CO1	PO1
	(OR)			
с.	Explain the design equation of a Plug flow reactor with neat sketch.	10	CO1	PO1
d.	Write the different steps for the formulation of a model.	5	CO1	PO1
4. a.	Develop the mathematical model of ideal binary distillation column	10	CO2	PO3
b.	Derive the mathematical model for constant hold up multi stage CSTR in isothermal condition.	5	CO2	PO3
	(OR)			
c.	Develop the mathematical model of a double pipe heat exchanger where the resistance to heat transfer from a condensing fluid to inner fluid can be represented by convective heat transfer co-efficient on both sides of the heat transfer wall.	10	CO2	PO3
A	Assume that resistance of wall is negligible but the wall has finite heat capacity.	F	CO2	PO3
d.		5		
5. a.	Find the root of the equation sinx–coshx+1=0, correct to 4 decimal places, using Regula falsi method. The root lies between 1 & 2.	10	CO3	PO2
b.	Explain dichotomous method.	5	CO3	PO1
	(OR)			
c.	Solve the following LPP using simplex method.	10	CO3	PO2
	Max Z=X1+X2+3X3			
	Subject to,			
	$3X1+2X2+X3 \leq 3$			
	$2X1+X2+2X3 \leq 2$			
	X1, X2, X3≥0			
d.	Explain Wegstein's method.	5	CO3	PO1
6. a.	Encode the following information flow diagram with the following matrices	10	CO4	PO2

Process matrix, Stream connection matrix, Incidence matrix and Adjacency matrix Explain different types of simulation

	Trocess main, bream connection main, merachee main and rajaceney main			
b.	Explain different types of simulation.	5	CO4	PO1
	(OR)			
c.	Explain in details about dynamic simulation.	10	CO4	PO1
d.	Write in details about process simulator.	5	CO4	PO1
	End of Paper			

--- End of Paper ---