AR - 18

Reg. No.

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022

B. Tech Degree Examinations, November – 2021

(Seventh Semester)

BELPC7010 / BEEPC7010 - POWER SYSTEM OPERATION AND CONTROL (EE/EEE)

• • . 100 M KS .

TIME	: 3 hrs		Maxi	<u>mum: 1</u> 0	0 Marks
	Answ	er A	LL Questions		
	The figures in the ri	ght h	and margin indicate marks.		
	PART – A: (Multiple Choice Questions)		$(2 \ge 10 = 20)$		
<u>Q.1.</u>	Answer ALL questions			[CO#]	[PO#]
a.	Incremental cost of two generators $I_{c1} = 0.2$				
	the generator are 150 and 250 MW. Find the	ne loa	d sharing of each generator for a load	2	2
	of 200 MW?				
	i. $P_1 = 120 \text{ MW}, P_2 = 80 \text{ MW}$	ii.			
	- , _	iv.	- , _		
b.	The Y bus matrix of 100 bus interconnecte	•	tem is 90% sparse. Hence the number	1	2
	of transmission lines in the system must be			_	_
	i. 250	ii.	500		
	iii. 450	iv.	900		
c.	A power system consists of 300 buses ou		-		
	buses are the ones with reactive power sup	-		2	2
	shunt capacitors. All the other buses are loa		=	_	_
	analysis for the system using Newton-Raph				
	i. 553×553	ii.	554×554		
	iii. 555×555		(D) 540×540	-	
d.	Incremental cost curve is			2	1
	i. Slope of Input output curve	ii.	Slope of load curve		
	iii. Both (i) and (ii)	iv.	None of these		
e.	The system constraint are				
	i. Equality Constraint	ii.	Inequality constraint		
_	iii. Both (i) and (ii)	iv.	None of these		
f.	"Its loading from now on is held fixed at th			2	1
	between the remaining generators on equal		•	-	-
	i. Patton's security theory	ii.	Kuhn-Tucker theory		
	iii. Both (i) and (ii)	iv.	None of these	-	
g.	The equal area criteria of stability are used			3	1
	i. Steady state stability limit	ii.	Transient state stability limit		
	5	iv.		-	
h.	If the torque angle of the alternator increase			3	1
	i. Steady state stability limit	ii.	Transient state stability limit		
	iii. Instability	iv.	None of the above	_	
i.		-	specified	1	1
	i. Voltage Magnitude, Real power	ii.	Active, Reactive power		
	iii. Voltage Magnitude, Phase angle	iv.	Active power, phase angle	c	
j.	are designed based on swing			2	1
	i. Rotor windings	ii.	Transformer windings		
	iii. Stator windings	iv.	Protection devices		

PART – B: (Short Answer Questions) Q.2. Answer ALL questions [CO#] [PO#] What is per unit system? a. 1 1 b. What is surge impedance loading? 1 1 Why the Jacobian Matrix of a large power system is sparse? 1 1 c.

(2 x 10 = 20 Marks)

 d. What is Incremental cost criterion? e. What is meant by unit commitment? f. What is meant by Load frequency control? g. What are typical conditions needed to be taken care of while distributing loads among the plants of a system? h. State swing equation of a generator. i. Define the transient stability of a generator j. What are the various methods of voltage control in transmission systems? 							2 3 3 3	1 1 1 1 1 1 1	
	RT – C: (Long Ar er ALL questions	nswer Question	ıs)			$(15 \times 4) = Marks$	60 Ma [CO#]	rks) [PO#]	
3. a.	a four-bus system Bus Code Av 1-2 1-3 2-3 2-4 3-4 The schedule of a Bus Code Specification 1 2 3 4	n. The line admittance in MI 2-j8.2 1-j4.1 0.667-j2.6 0.95-j4 2-j7.5 active and react P - 0.5 0.4 0.3	ittance of a 4-bu ho ive power is Q - 0.201 0.305 0.1	d real and reactive is system is as under V 1.058+j0 Not Specified Not Specified Not Specified not Specified ond of first iteration	Bus Slack PQ PQ PQ	ſ	1	2	
	~		(OR)						
b.		bus and an off-	diagonal eleme	rix equals the sum c nt equals the negati uses			1	3	
4. a.	The incremental	cost characteris				15	2	2	
	IC1= 0.1P1 + 8.0 Rs./MWh; IC2=0.15P2 +3.0 Rs./MWh When the total load is 100 mw, what is the optimum sharing of load? (OR)								
b.				patch problem of	a 2-generator	r 8	2	3	
c.	 system without considering the transmission loss c. A power system consisting of two generators of capacity 210MW each supplies a total load of 310 MW at a certain time. The respective incremental fuel cost of Generator-1 and Generator-2 are: dC₁/dP_{G1} = 1.125P_{G1} + 18.9 dC₂/dP_{G2} = 1.131P_{G2} + 12 						2	2	
5. a.			uency control a	nd economic dispat	ch control?	7	2	1	
	A 50 Hz, 4 pole to of 9 kW-sec/kV.	urbo generator of A. Find the kir cceleration, if t	of rating 20 MV netic energy sto he input less the	A, 13.2 kV has an in ored in the rotor at e rotational loss is 2	ertia constant synchronous	t 8	2	2	

с.	Two generators rated with 221MW and 429MW are operating in Parallel. The	8	2	2
	droop characteristics of their governors are 4.15% and 5.35% respectively from			
	no-load to full load. The speed changers are so set that the generators operate at			
	50 Hz sharing the full load of 650MW in the ratio of their ratings. If the load			
	reduces to 550 MW, what will be the load shared by each generator? Also find			
	out the system frequency under this condition			
d.	Develop a typical excitation arrangement to control the voltage of an alternator	7	4	3
	and explain briefly?			
6. a.	Distinguish between steady-state stability and transient stability of a power	8	4	3
	system? How to improve transient stability of a power system?			
b.	Derive The Power-Angle Equation?	7	4	3
(OR)				
c.	Role of Automatic voltage regulator in improving stability	7	4	1
d.	Derive the swing equation of a single generator system.	8	4	3

--- End of Paper ---