AR - 18	Reg. No.					

QPC: RN18001216

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, November - 2021

(Seventh Semester)

BMEPE7021 - MODERN MANUFACTURING PROCESS

(Mechanical Engineering)

Time: 3 hrs			M	Maximum: 100 Marks				
		Ansv	ver ALL Qu	estions				
		The figures in the r	ight hand m	argin indicate marks.				
PART – A: (Multiple Choice Questions)				$(2 \times 10 = 20 \text{ Marks})$				
Q.1.	Answer A	LL questions			[CO#]	[PO#]		
a.	In Abrasiv	ve jet machining, work piece	e material o	f removed by which of the	e CO 1	PO 1		
	following	means?						
	(i)	Mechanical ablation	(ii)	Mechanical abrasion				
	(iii)	Vaporization	(iv)	corrosion				
b.	Increasing	g volume concentration of al	orasive in sl	urry would affect MRR in	n CO 1	PO 1		
		ving manner		•				
	(i) increas	e MRR	(ii) decrea	ase MRR				
	(iii) would	lly decrease and then						
		_	increase N					
c.	Which among the following in NOT a advantage of non-conventional			of non-conventional	CO 1	PO 1		
	machining	2						
	(i)	better surface finish	(ii)	no friction				
	(iii)	Micro size chip	(iv)	Less skilled labour				
	, ,	formation	, ,	required				
d.	Electrode	gap in electro chemical mad	chining is go	enerally ranged from	CO 2	PO 1		
	(i)	3.1 mm to 4.2 mm	(ii) 0.1 m	nm to 0.2 mm				
	(iii) 0.5 n	nm to 0.9 mm	(iv) 1.1 m	m to 1.2 mm				
e.	Which of	the following is NOT a fund	ction of diel	ectric fluid	CO 2	PO 1		
	(i)	Flushing away the debris	(ii)	To decrease the materia	ıl			
	. ,	5	` ,	removal rate				
	(iii)	To make the medium	(iv)	Stabilizing the arc				
	, ,	conducting	` ′	C				
f.				of chemical machining	CO 2	PO 1		
	(i)	Masking	(ii)	Etching				
	(iii)	Synthesizing	(iv)	De-masking				
g.	, ,	eam machining is a/an	, ,	C	CO 3	PO 1		
Ü	(i)	adiabatic	(ii)	Thermal				
	(iii)	Iso-thermal	(iv)	isentropic				
h.	Which ga	s is generally NOT used as s	hielding ga	s during PAM	CO 3	PO 1		
	(i)	Oxygen	(ii)	Nitrogen				
	(iii)	Argon	(iv)	Carbon dioxide				
i.	The core	of reverse engineering is an	activity call	led	CO 4	PO 1		
	(i)	extract abstractions	(ii)	directionality				
	(iii)	restructure code	(iv)	interactivity				
j.	The type	of rapid prototyping system	n which us	es a laser to fuse powde	red CO 4	PO 1		
-	• -	astics, or ceramics:		-				
	-	deposition modeling	(ii) Solid	ground curing				
	(iii) Selec	tive laser sintering		olithography apparatus				

PAl	RT – B: (Short Answer Questions)	$(2 \times 10 = 20 \text{ Marks})$			
O.2. A	Answer ALL questions	ГС	O#]	[PO#]	
	Plot the effect of process parameters on MRR during AJM.	CC	-	PO 1	
	Glass is being machined at a MRR of 9 mm3/min by SiC abrasive at velo			PO 2	
	of 180 m/s, if the velocity of jet is increased to 200 m/s, calculate the MRR.	•		102	
c. I	Discuss the function of transducer in USM.	CC) 1	PO 1	
d. I	Differentiate between conventional grinding and ECG.	CC	2	PO 1	
	Differentiate between sinker EDM and wire EDM	CC		PO 1	
	Differentiate between transfer mode and non-transfer mode plasma.	CC		PO 1	
	Classify the types of laser used in LBM process.	CC		PO 1	
_	Explain the function of electron gun in EBM.	CC		PO 1	
				PO 1	
	Define concurrent engineering.	C(PO 1		
PA	RT – C: (Long Answer Questions)	$(15 \times 4 = 60 \text{ Ma})$			
Answe	er ALL questions	Marks	[CO#]	[PO#]	
3. a.	Explain the working principle, application and advantages of WAJM.	8	CO 1	PO 1	
b.	You are working in a manufacturing concern which cuts grooves in	1 ⁷	CO 1	PO 2	
	metallic bodies. The groove depth (d) is 4 mm with a tolerance of ± 0.03	3			
	mm. Groove depth and velocity of cut are related as $d = k/V$. At present	,			
	you are employing a grooving velocity V = 10 m/min to obtain an exac	t			
	depth of $d = 4.02$ mm. However due to running of another machine	e			
	nearby- a vibration introduced into the table with amplitude, $A = 0.03$				
	mm, angular velocity = 50π rad/s. If you still go on cutting the grooves				
	will they be accepted? Why?	,			
	(OR)				
c.	Explain the working principle, advantages, disadvantages and	10	CO 1	PO 1	
	applications of AJM				
d.	Mention the advantages of non-conventional machining.	5	CO 1	PO 1	
4. a.	With a neat sketch, explain the working of RC type generator in EDM.	8	CO2	PO1	
		7	CO2	PO1	
υ.	Explain sequentially all the steps involved in chemical machining	,	002	101	
	(OR)	10	CO2	PO1	
c.	Explain the working principle, application and advantages of ECM		CO2	PO2	
d.	In electrochemical machining of pure iron a material removal rate of 600	,	CO2	FO2	
	mm3 /min is required. Estimate current requirement. (for Iron N = 56	,			
~	$n = 2$, $\rho = 7.8$ gm/cc).	10	CO2	DO1	
5. a.	Explain the working principle, application and advantages of PAM.	10	CO3	PO1	
b.	For cutting a 150 microns wide slot in a 1 mm thick tungsten shee		CO3	PO2	
	(specific power consumption $C = 12 \text{ W/mm3/min}$), an electron beam	1			
	with 5 kW power is used. Determine the speed of cutting.				
	(OR)				
c.	With a neat sketch explain the working principle of LBM.	10	CO3	PO1	
d.	Explain the process of population inversion.	5	CO3	PO1	
6. a.	Explain with neat sketch, any two methods of surface engineering	10	CO4	PO1	
b.	Explain about reverse engineering and mention its advantages	, 5	CO4	PO1	
	disadvantages and applications.				
	(OR)				
c.	Explain process of Selective laser sintering with a neat sketch.	7	CO4	PO1	
d.	Distinguish between PVD and CVD.	8	CO4	PO1	