AR - 18

Reg. No.

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR - 765022

B. Tech Degree Examinations, November – 2021

			0	(Seventh Semester)		
BMEPE7041		– Design and Analysis of Heat Exchanger				
	ORIN			echanical Engineering)	0	
Time: 3 hrs		(6 6,	m: 100 Marks		
		Ans	wer A	LL Questions		
		The figures in the	right h	and margin indicate marks.		
PART – A: (Multiple Choice Questions) $(2 \times 10 = 20)$			20 Mar	:ks)		
<u>Q.1</u>		ver ALL questions			[CO#]	[PO#]
a.		0		$_1=\Delta T_2$, where ΔT_1 is the temperature	CO1	PO1
		• •		id streams at one end and ΔT_2 is the		
	i.	rature difference at the other end a condenser		-		
	iii.	a counter flow HEx	ii. iv.	an evaporator A parallel flow HEx		
b.		ll and tube heat exchanger, baff		1	CO1	PO1
υ.	i.	Increase the mixing of fluid	ii.	Increase the heat transfer area		
	iii.	deflect the flow in desired	iv.	Reduce fouling of the tube surface		
		direction				
c.	Heat C	Capacity is defined as the produc	ct of		CO2	PO1
	i.	Mass and temperature	ii.	Mass and specific heat		
	iii.	Specific heat and	iv.	Time and temperature		
		temperature				
d.				condenses at a temperature of 60°C.	CO2	PO2
		0		ves at 45°C. The logarithmic mean		
	-	rature difference (LMTD) of the				
	i.	16.2° C	ii.	21.6° C		
	iii. Ear al	30° C	iv.	37.5° C	CO2	PO1
e.		-		n temperature difference and ΔT_{min} is een the two fluids. LMTD is the log	002	101
		-		are the minimum and the maximum		
		-		heat transfer (Q_{max}) between the two		
	fluids	• •	0001010	near transfer (Qinax) between the two		
	i.	C _{min} LMTD	ii.	$C_{min} \Delta T_{max}$		
	iii.	$C_{max} \Delta T_{max}$	iv.	$C_{max} \Delta T_{min}$		
f.	LMTI	O in case of counter flow heat ex	chang	er as compared to parallel flow heat	CO2	PO1
	exchar	nger is				
	i.	Higher	ii.	Lower		
	iii.	Same	iv.	Depends on the area of heat		
				exchanger		
g.		eat exchanger is said to be comp			CO2	PO1
	i. 	equal to 700 m ² / m ³	ii.	less than 700 m ² / m ³		
1.	iii.	more than 700 m ² /m ³		npredictable	CO2	DO1
h.		of the following is not a proper	•	•••	CO3	PO1
	i.	Even though the heat exchanger has low hydraulic	ii.	Leakage is never a concern in these heat exchangers		
		diameter, it can be readily		heat exchangers		
		and easily cleaned				
	iii.	It provides a very large	iv.	The net weight required is always		
		surface area for heat transfer		less than its equivalent Shell and		
				tube type heat exchanger		
:	Coolin	a towar affactivances is the roti	o of		CO^{2}	DO1

i. Cooling tower effectiveness is the ratio of

	i.	Range / (range + approach)	ii.	Approach / (range + approach)	
	iii.	Range / Approach	iv.	Approach / Range	
j.	How o	does outside air enter into the w	et cool	ing system?	
	i.	Air vents	ii.	Louvers	

iii.	Tuyeres	iv.	Vacuum

PART – B: (Short Answer Questions)

$(2 \times 10 = 20 \text{ Marks})$

<u>Q.2</u>	[CO#]	[PO#]	
a.	What is fouling factor?	CO1	PO1
b.	Are we really getting extra advantage by providing Baffles in Shell and tube heat exchanger Justify your answer.	CO3	PO1
c.	What do you mean by correction factor for a cross flow heat exchanger?	CO1	PO1
d.	Are we really getting extra advantage by providing Baffles in Shell and tube heat exchanger Justify your answer.	CO2	PO1
e.	Water is flowing through a 12 mm tube filling 80% of its cross section. What is its hydraulic diameter?	CO4	PO2
f.	What is the purpose of using baffles in a heat exchanger?	CO2	PO1
g.	What will be the heat capacity rate of a fluid during boiling? Justify your answer.	CO3	PO1
h.	In a liquid to gas heat exchanger, it is best to put extended surfaces on the gas side. Why?	CO3	PO1
i.	In which side of a STHE it is recommend to pass a corrosive fluid and why?	CO2	PO1
j.	What do you understand by boiling point rise?	CO2	PO1

PART – C: (Long Answer Questions)

(15 x 4 = 60 Marks)

Marks [CO#] [PO#]

CO3

PO1

Answer ALL questions

3. a.	In a shell and tube counter flow heat exchanger, water flows through a copper tube of 20 mm ID and 23 mm OD. Oil passes through the shell. Water enters at 20 °C and leaves at 30 °C. Oil enters at 75 °C and leaves at 60 °C. Water and oil have the coefficients of 4500 and 1250 W/m ² K respectively. Thermal conductivity of the tube wall is 355 W/ m-K. The fouling factor for water and oil are 0.0004 and 0.0001 respectively. If the length of the tube is 2.4 m, Calculate (i) overall Heat transfer coefficient and (ii) The heat transfer rate. (OR)	15	CO1	PO2
b.	Derive expression for overall Heat Transfer coefficient for double pipe heat exchanger	10	CO1	PO1
c.	Classification of Heat Exchanger according to Transfer Process.	5	CO1	PO1
4. a.	Derive Expression for Effectiveness of counter flow heat exchanger and also express the value of ' ϵ ' when R= 1.	15	CO2	PO1
	(OR)			
b.	Hot Gases are used in a finned tube heat exchanger to heat 2.5 kg/S of water ($c = 4.18 \text{ kJ} / \text{kg} ^{\circ}\text{C}$) from 35 $^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$. The gases ($c = 1.09 \text{ kJ} / \text{kg} ^{\circ}\text{C}$) enter as 200 $^{\circ}\text{C}$ and leaves at 93 $^{\circ}\text{C}$. Overall heat transfer coefficient is 180 W/m ² $^{\circ}\text{C}$. Calculate the area of the Heat Exchanger and the effectiveness. Take NTU = 1.4.	15	CO3	PO2
5. a.	A single effect evaporator with 12 m^2 of heating surface is used to concentrate NaOH solution from 10% to 50% solids, the feed being 2000kg/hr. The feed enters at 50°C and has a specific heat of 0.80 keel/kg °C. The pressure in the vapour space is 10 cm Hg absolute	15	CO3	PO2

 $0.80 \text{ kcal/kg.}^{\circ}\text{C}$. The pressure in the vapour space is 10 cm Hg absolute. 920 kg/hr of steam of 102°C are used. Calculate the apparent overall heat transfer coefficient. Boiling point of 50% NaOH solution = 87°C .

b.	A Steam condenser is 4 m long and contains 2000 brass tubes of 1.59 cm OD each. In attest 125 kg/s of cooling water at 22° c is supplied to the condenser			
	and when the steam pressure in the shell is 61 mm of Hg, the condensate is produced at 3.05 kg/s . Determine : a. Effectiveness of the heat exchanger b. Overall heat transfer coefficient.	15	CO3	PO2
	Take $C_{p \text{ water}} = 4.178 \text{ kJ/Kg K}$			
6. a.	The cooling water used in a power plant consists of 10 big fans. The quantity	15		
	of cooling water circulated through the tower is 1000 kg/minute and it is			
	cooled from 35 °C to 30 °C. The atmospheric conditions are 35 °C DBT and			
	25 °C WBT. The air leaves the tower at 30 °C and 90% R.H. find out:		CO4	PO2
	a. The quantity of air handled per fan per minute			
	b. The quantity of make-up water per hour.			
	Neglect the loss due to carry over and heat losses.			
	(OR)			
b.	Explain how the makeup water requirement is estimated from energy and mass balance of a cooling tower.	8	CO2	PO1
c.	Classify Cooling towers and explain in which season the performance of cooling tower will be more.	7	CO2	PO1

--- End of Paper ---