	QPC: RN18001288 AR - 1	8 Reg. No.										
GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022 B. Tech Degree Examinations, November – 2021												
	(Seventh Semester)											
	BEEPE7041 – ADVANCED CONTROL SYSTEMS											
		(EEE)										
-	Time: 3 hrs				Μ	laxim	um:	100 N	Aarks	8		
Answer ALL Questions The figures in the right hand margin indicate marks.												
	PART – A: (Multiple Choice Questions)	ight hand margin ind	icate ma	arks.	(2	x 10	= 20	Mar	ks)			
<u>Q.1.</u>	Answer ALL questions				(-			[CO#	#]	[PO#]		
a.	Aliasing is caused when:			1			<i>d</i>	[CO2	2]	[PO1]		
	(i) Sampling frequency must be equal to the message signal	(ii) Sampling frequer message signal	-	-								
	(iii) Sampling frequency must be less to the message signal	(iv) Sampling freque or equal to the message			grea	ater tl	han					
b.	Inverse z-transform of the system can be calcu		se signai					[CO2	2]	[PO1]		
	(i) Partial fraction method	(ii)Long division met										
с.	(iii) Basic formula of the z-transform The sum of the Eigen values in the given math	(iv) All of the mention	ned					[CO]	11	[PO1]		
с.	(i)The sum of all non-zero components in		nts of an	y row	7			[00]	-1	[101]		
	the matrix		1 1'		1							
	(iii)Sum of the elements of any column	(iv)Sum of the princip	bal diago	onal el	leme	ents						
d.	Consider a LTI system described by the given $\frac{d^2a(t)}{dt^2} + 3\frac{d a(t)}{dt} + 2a(t) = r(t)$	differential equation:						[CO]	1]	[PO2]		
	Where $a(t)$ is the output. The Eigen values of	÷	equation	n are:								
	(i)2,1 (i)-2,1	(i)2,-1 (iv)-2,-1										
e.	State variable analysis has several advantages	overall transfer function						[CO]	1]	[PO1]		
	(i) It is applicable for linear and non-linear and variant and time-invariant system		•	1								
	(iii) It takes initial conditions of the system into account	(1v) All of the mention	ned									
f.	The transfer function $Y(s)/U(s)$ of a system de $dx/dt=-2x+2u$ and $y(t) = 0.5x$ is:	escribed by the state eq	uations					[CO1	1]	[PO1]		
	(i) 0.5/(s-2	(ii)1/(s-2)										
g.	(iii)0.5/(s+2) A transfer function of control system does not	(iv)1/(s+2) of have pole-zero cance	ellation	Whic	h or	ne of	the	[CO]	1]	[PO1]		
0	following statements is true?	-						-	-			
	(i) System is neither controllable nor observable	(ii) System is complet observable	tely cont	rollat)le a	nd						
	(iii)System is observable but uncontrollable	(iv)System is controll		unob	serv	able			• •	10011		
h.	The analysis of multiple input multiple output (i) State space analysis	(ii) Root locus approa	•					[CO2	2]	[PO1]		
	(iii) Characteristic equation approach	(iv) Nicholas chart	.011									
i.	Asymptotic stability is concerned with (i)A system not under the influence of the	(ii)A system under int	fluence of	of inp	ut			[CO3	3]	[PO1]		
	state (iii)A system under influence of the output	(iv)A system not unde	er influei	nce of	f inp	out						
j.	The capacitance, in force-current analogy, is a	nalogous to						[CO2	2]	[PO2]		
5	(i) Momentum	(ii) Velocity								-		
	(iii)Displacement	(iv)Mass										

	PART – B: (Short Answer Questions) (2 x			10 = 20 Marks)				
0^{2}	Answer ALL questions		[CO#]	ſŦ	PO#]			
<u>Q.2.</u> a.	State the condition for controllability by Kalman's Method.		[CO1]		PO2]			
b.	What is bilinear transformation?		[CO3]	-	PO1]			
с.	What do you understand by discrete time control system? Draw the block diagram of		[CO3]	-	PO2]			
A	a system.		[CO2]	LT.	0011			
d. e.	Show the relationship between s-plane and z-plane. Is the relationship one-to-one? The transfer function of a certain system is $\frac{Y(s)}{U(s)} = \frac{1}{5s^3+7s^2+6s+3}$ write down the A,B m		[CO2] [CO1]	-	201] 202]			
	pair of the equivalent state model							
f.	Find the z-transform of the sequence $x[n] = a^n u(-n-1)$		[CO2]	ſI	PO2]			
g.	Draw the characteristics of a relay with dead zone and hysteresis. State whether a rela	ay is	[CO4]	-	201]			
U	an incidental or intentional non-linearity	•		-	-			
h.	Define z- transform of a ZOH		[CO3]	[]	PO2]			
i.	What is region of convergence?		[CO2] []		PO1]			
j.	State initial and final value theorem with regard to z-transform.		[CO3] [PO		PO2]			
PART – C: (Long Answer Questions) (15 x 4 = 60 Marks)								
	ver ALL questions	N	1arks	[CO#]	[PO#]			
3. a			8	[CO1]	[PO2]			
b			7	[CO3]	[PO3]			
	: c(k) = r(k+2) - 3r(k+1) + 2r(k)							
	Where $c(k)$ = discrete output signal, $r(k)$ = discrete input signal.							
	Determine the stability of the system using Jury's stability test (OR)							
c	U		8	[CO3]	[PO3]			
	$\frac{C(z)}{R(z)} = \frac{z}{(1+0.5z)(1+2z)}$							
	R(z) = (1 + 0.5z)(1 + 2z)							
	(i) Using partial fraction method							
	(ii)Using Long division Method							
d	Explain the properties of Z- transform		7	[CO2]	[PO2]			
4. a			8	[CO1]	[PO2]			
	$\dot{x}(t) = \begin{bmatrix} 0 & 5\\ -1 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0\\ 1 \end{bmatrix} u, y = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t)$							
	Find the state transition matrix of the system. Also draw the state diagram							
b	. Give a short note on Mapping between s-plane and z-plane		7					
	(OR)							
с			8	[CO2]	[PO3]			
	$\frac{C(s)}{R(s)} = \frac{4s^2 + 3s + 5}{(s+2)(s+1)^2}$							
	$\frac{1}{R(s)} = \frac{1}{(s+2)(s+1)^2}$							
	Obtain the state model in Jordan canonical form.							
d	. Describe in which aspects the linear system behaves differentially from linear system	L	7	[CO4]	[PO1]			
5. a	Write short note on:		8	[CO2]	[PO2]			
	Phase plane method							
b	Write short note on Solution of discrete-time state equations (OR)		7	[CO2]	[PO2]			
с			8	[CO3]	[PO1]			
d			7	[CO1]	[PO2]			
6. a			8	[CO1]	[PO3]			
01 4	$\frac{d^2 y(t)}{dt^2} + 3\frac{d y(t)}{dt} + 2y(t) = r(t)$		0					
	Find the state space representation in diagonal canonical form		_	[[[00]]	IDON			
b			7	[CO2]	[PO2]			
	(OR)		-	[002]	IDO1			
с			8	[CO3]	[PO1]			
d			7	[CO1]	[PO2]			
	End of Paper							