	B.	Tech Degree Examinations, June – 2021 (Sixth Semester)		
		BBTPC6020 – BIOINFORMATICS		
	Company C	(Biotechnology)		
Т	ime: 2 hrs		num: 50 N	/larks
		Answer ALL Questions		
D.A.	_	the right hand margin indicate marks.	10 10 1	.
PA	RT – A: (Multiple Choice Questions) (I X	10 = 10 N	viarks)
<u>).1.</u>	Answer ALL questions		[CO#]	[PO#
a.	Secondary structures prediction	of proteins using statistical analysis is	3	2
	proposed by			
	(i) GCR	(ii) Barton		
	(iii) Rost and Sandor	(iv) Chou-Fasman		
).	How many best global alignment	s is possible between sequences AAAC and	2	2
	AGC, where the scoring scheme is	s +1 for match, -1 for mismatch and -2 for an		
	alignment with a gap.			
	(i) 1	(ii) 2		
	(iii) 3	(iv) 4		
c.		documentation entries describing protein	3	1
		l sites as well as associated patterns and		
	profiles to identify them.			
	(i) PROSITE	(ii) Golden path		
	(iii) OMIM	(iv) Gene cards		
d.	Which of the following sets contain		2	1
	(i) G, D, N, E	(ii) I, V, L, M		
	(iii) R, K, H	(iv) F, Y, W	-	-
e.	-	rogram that combines neural network with	3	2
	multiple sequence alignment			
	(i) PSI PRED	(ii) PHD		
c	(iii) Protparam	(iv) pfam		1
f.	_	ment programme classifies the protein in	1	1
	database.			
	(i) SCOP	(ii) CATH		
a	(iii) PDBSum	(iv) PDBeFold	2	2
g.		nt, refers to the percentage of	2	Z
		esidues between two aligned sequences.		
	(i) sequence identity	(ii) sequence homology		
	(iii) sequence similarity	(iv) sequence non homology	4	2
1.	On average, what is the length of a (i) About 100 residues	(ii) About 200 residues	4	Z
	(i) About 500 residues	(iv) About 900 residues		
i.		ich is the similar at same position of same	1	2
1.	-	-	1	L
	amino acid along with similar in physiochemical properties such as size,			
	charge, and hydrophobicity. (i) Identity	(ii) Similarity		
		(II) Similarity		

	(iii) Homology	(iv) Xenology		
j.	Pharmacologically inactive compounds	are called	4	2
	(i) Prodrug	(ii) Predrug		
	(iii) Postdrug	(v) Biodrug		

PART – B: (Short Answer Questions)

(2 x 5 = 10 Marks)

Q.2. Answer ALL questions		[CO#]	[PO#]
a.	Describe the uniqueness of Neural Network in protein structure prediction.	3	1
b.	Mention the applications of Needleman–Wunsch algorithm	2	2
c.	In protein secondary structure prediction various methods are used. Out of these two methods Chou & Fasman and PHD which one is good and why?	3	1
d.	What does RCSB PDB stand for? What does it contain ?	1	2
e.	Explain the role of protein structure in Drug Designing.	4	2

PART – C: (Long Answer Questions) (6 x 5 = 30 Marks)

Answer ANY FIVE questions		Marks	[CO#]	[PO#]
3.	Elucidate the characteristics and classification of biological database.	(6)	1	2
4.	Explain the significance, objectives, URLs, data formats of primary DNA database in detail.	(6)	1	2
5.	Explain the working of BLAST based on your knowledge of sequence alignment.	(6)	2	1
6.	Perform the Smith Watterman algorithm for the following sequences by Dynamic programming	(6)	2	1
	Seq #1 TGAATTC			
	Seq #2 GATTC and the scoring rules are Match = 1, Mismatch = -2 and Gap penality = -2.			
7.	What are Hidden Markov models? Explain how they are used to identify profiles in a protein sequence.	(6)	3	2
8.	Explain the Chou-fasman secondary structure prediction method. Detail about the algorithm.	(6)	3	2
9.	Summarize why Protein folding plays an important role in biotechnology.	(6)	4	2
10.	Illustrate in detail how the fold recognition and its library is very important in protein functional analysis and drug design.	(6)	4	2

--- End of Paper ---