QPO	C: RJ1800111	AR - 1	8	Reg. No.					
			n Degre (S MEPC60	UTONOM e Examinatic Sixth Semeste 10 - HEAT T aanical Engin	ons, Ju er) RANS	ne – 20 SFER 5)	021		
	me: 2 hrs	Answ	ver ALL	Questions			Maxi	imum: 50 N	Marks
		The figures in the ri	ght hand	- margin indic:	ate mar	·ks.			
PA	RT – A: (M	ultiple Choice Questions)	8				(1 -	x 10 = 10 N	Marks)
0.1	A	II averticate						[[[]]	[DO#]
-		<u>LL questions</u>						[CO#] 1	[PO#] 1
a.		iffusivity of a substance is. oportional of thermal	(ii) inv	ersely proport	tional to	o k		1	1
		sely proportional to k^2	(iv)) pi	roportional to	(2k)				
b.		onductivity of a material may						1	1
	(i) quantity of heat flowing in one second through one cm of material when opposite faces are maintained at a temperature difference of 1^0 C. (ii) quantity of heat flowing in one second through a slab of the material of area one cm square, thickness 1 cm when its faces differ in temperature by 1^0 C								
	unit area unit thick difference	onducted in unit time across through unit area through eness when a temperature of unity is maintained pposite faces.	(iv) All	of the above					
c.							1	1	
	(i) electric heater			(ii) steam condenser					
	(iii) melting of ice (iv) boiler								
d.	Critical insulation for a sphere is given by						2	1	
	., .	⟨/h)	(ii) (k/-	,					
	(iii)	(h/2k)	(iv)						
e.		umber is the ratio of Nusselt r			1			2	1
		eynolds number	(ii)	Prandtl num					
		roduct of Reynolds and selt number	(iv)	None of thes	se				
f.	Prandtl number for liquid metal is generally occurs in the range						2	1	
	(i) 0.	.003 to 0.01	(ii)	0.1 to 1.0					
	(iii) 0.	.02 to 0.1	(iv)	1 to 10					
g.	In radiativ	e heat transfer, a grey surface	e is one					3	1
	(i) w	which appears grey to eye.	(ii)	whose independent	emissiv of wav	•	is th		
	to	which has reflectivity equal o zero.	(iv)	which appea from all dire	-	ally b	right		
h.	Waveleng	th for maximum emissive pov	wer is gi	ven by				3	1

	(i)	Wein's law	(ii)	Stefan's law		
	(iii)	Kirchoff's law	(iv)	Plank's law		
i.	A perfe	ct black body			4	1
	(i)	is black in colour	(ii)	reflect all incident radiation		
	(iii)	absorbs all incident radiation	(iv)	transmit all incident radiation		
j.	Automo	bile radiator is a heat exchanger	xchanger of		4	1
	(i)	counter flow type	(ii)	Parallel flow type		
	(iii)	cross flow type	(iv)	regenerator type		

PART – B: (Short Answer Questions)

Q.2. Answer ALL questions [CO#] [PO#] a. Differentiate between thermal conductivity and thermal conductance. Mention their 1 1 units. b. What is the dimensionless number which represents the ratio of momentum 2 1 transport to energy transport? Explain Reynolds analogy with regard to turbulent fluid flow and heat transfer. 1 c. 3 d. There are two concentric long cylinders having diameters d1 and d2 (d1>d2). What 1 4 is the view factor of outer cylinder to inner cylinder? If the ratio of inlet temperature difference to exit temperature difference in a heat e. 4 1 exchanger is unit what is the ratio of LMTD to arithmetic mean temperature

PART – C: (Long Answer Questions)

Answer ANY FIVE questions

- 3. A 50 mm \times 50 mm iron bar 0.4 m long is connected to the walls of two heated (6) 1 reservoirs, each at 120 ° C. The ambient air temperature is 35 ° C and the convective heat transfer coefficient is 17.4 W/m²K. Calculate the rate of heat loss from the bar and the temperature of the bar midway between the reservoirs. The thermal conductivity of the iron is 52 W/mK.
- 4. A bar of square cross-section connects two metallic structures. One structure is (6) 1 maintained at a temperature 200°C and the other is maintained at 50°C. The bar, 20 mm×20 mm is 100 mm long and is made of mild steel (k = 0.06 kW/m K). The surrounding are at 20°C and the heat transfer coefficient between the bar and surroundings is 0.01 kW/m²K. Derive an expression for temperature distribution along the bar and hence calculate the total heat flow rate from the bar to the surroundings.
- 5. For laminar flow over flat plate derive an expression for local Nusselt number (6) 2 from first principle assuming a cubic temperature profile. The thermal boundary layer thickness is given by

$$\frac{\delta_t(x)}{x} = 4.53 \, \mathrm{Re}_x^{-\frac{1}{2}} \cdot \mathrm{Pr}^{-\frac{1}{3}}$$

6. Air at 2 atm and 200 °C is heated as it flows at a velocity of 12 m/s through a tube 2 (6) 2 with a diameter of 3 cm. A constant heat flux condition is maintained at the wall and the wall temperature is 20°C above the air temperature all along the length

$(2 \times 5 = 10 \text{ Marks})$

(6	X	5	=	30	Μ	ar	ks)
----	---	---	---	----	---	----	-----

[CO#]

[PO#]

2

2

2

Marks

of the tube. Calculate (a) the heat transfer per unit length of the tube and (b) the increase in bulk temperature of air over a 4 m length of the tube . Properties of air at 200°C arePr = 0.681, μ = 2.57x10⁻⁵ kg/ms, k = 0.0386 W/m K and C_p = 1.025 kj/kgK

7. An enclosure measures 1.5 m x 1.7 m with a height of 2 m. The wall and celling (6) 3 are maintained at 350°C and the floor at 130°C. The walls and celling have an emissivity of 0.82 and the floor 0.7. Determine the net radiation to the floor.

2

2

2

3

4

- 8. Two very large parallel planes with emissivities 0.3 and 0.8 exchange radiative (6) energy. Determine the percentage reduction in radiative energy transfer when a polished aluminium radiation shield ($\varepsilon = 0.04$) is placed between them.
- A 4 kg/s product steam from a distillation column is to be cooled by a 3 kg/s (6) water steam in a counter-flow heat exchanger. The hot and cold stream inlet temperatures are 400 K and 300 K respectively, and the area of the heat exchanger is 30 m². If the overall heat transfer coefficient is estimated to be 820 W/m² K, determine the product stream outlet temperature, if its specific heat is 2500 j/kgK.
- 10. After a long time in service, a counter-flow oil cooler is checked to ascertain if (6) 4 2 its performance has deteriorated due to fouling. In the test a standard oil flowing at 2.0kg/s is cooled from 420 K to 380 K by a water supply of 1.0 kg/s at 300K. If the heat transfer surface is 3.33 m² and the design value of the overall heat transfer coefficient is 930 W/m²K, how much has it been reduced by fouling? Take C_p of oil as 2330 j/kgK and C_p of water as 4174 j/kgK.

--- End of Paper ---