QPC: RJ18001159		AR - 1	8	Reg. No.									
		GIET MAIN CA B. Te	AMPUS ech Degr	AUTONOMC ee Examinatio (Sixth Semesto PE6040– MA	ons, . er)	Jun	e – 2	021			22		
	Dennan		(Con	nmon to CSE a	and]	[.T)							
T	ime: 2 hrs]	Maxi	mui	n: 5	50 M	arks	3
		Answ	ver ALL	Questions									
	The	e figures in the ri	ight han	d margin indic	ate	mai	·ks.						
PA	PART – A: (Multiple Choice Questions) $(1 \times 10 = 10 \text{ Marks})$												
Q.1.	Answer ALL questions									[CC) #]	[PC) #]
a.	What is Machine learni (i) The autonomous knowledge through computer programs	acquisition of the use of	knowl progra	edge through t ms	the	use	of n	nanua	ıl	1		1	Ĺ
	(iii) The selectiveknowledge throughcomputer programs	-		edge through t		-							
b.	include? (i) Representation sch	-	(ii) Tr	aining scenario	0		doe	es no	ot	1		2	2
_	(iii) Type of feedback	1 6 1.	. ,	ood data struct	ures					2		1	1
c.	What is specified at any (i)Class of instance	y non-leaf node		ata value descr	inti	.				2]	L
	(iii) Test specification			ata process des	-		.						
d	Which of the following	properties is fa		-	-					2		-	2
ч.	(i) High bias			igh variance		011				_		-	-
	(iii) Lake of smoothnes surfaces	ss of prediction		-	ter s	set							
e.	A is a deci	sion support too	ol that us	ses a tree-like	grap	oh c	or mo	del c	of	2		2	2
	decisions and their pos resource costs, and util				e ev	ent	outc	omes	8,				
	(i) Decision tree		(ii) G	-	_								
f	(iii) Trees Which of the following	ara tha advanta	· /	eural Networks						2		~	,
f.	(i) Possible Scenarios	can be added	(ii) U result	se a white bo is provided by	x m a m	ode		give	n	2		2	2
	(iii) Worst, best and ecan be determinedscenarios	-	(iv) Al	l of the mentic	oned								
g.	Naina receives emails filter is 93% reliable is spam and 93% of span spam by her spam filter (i) 50% (iii)39%	i.e., 93% of the n mails are corre	e mails i ectly lab	it marks as sp belled as spam lity that it is re %	am . If a	are a m	actu ail m	ally	a	3		2	2

h.	Give the advantages of EM algorithm				3	3		
	(i) It has slow convergence.	(ii)	It makes convergence to	the				
			local optima only					
	(iii) Solutions to the M-steps often	(iii)	All the mentioned					
	exist in the closed form							
i.	Which of the following is finally produced by Hierarchical Clustering?				4	3		
	(i) final estimate of cluster centroids	(ii) tre	e showing how close things	are				
		to each	other					
	(iii) assignment of each point to	(iv) all	of the mentioned					
	clusters							
j.	Which of the following clustering requi		4	3				
	(i)Partitional	(ii) Hi	erarchical					
	(iii) Naive Bayes	(iv) No	one of the mentioned					
PART – B: (Short Answer Questions) (2 x 5 = 10 Mark						rke)		
TART - D. (Short Answer Questions)					$(2 \times 3 - 10 \text{ marks})$			

. Answer ALL questions	[CO#]	[PO#]
What is meant by Boolean function?	1	1
Give the example for hypothesis fitness.	1	2
How Baldwin Effect is differ from Lamarckian Evolution?	2	1
State Gibbs algorithm.	3	2
Give the difference between lazy and eager methods.	4	2
	Give the example for hypothesis fitness. How Baldwin Effect is differ from Lamarckian Evolution? State Gibbs algorithm.	What is meant by Boolean function?1Give the example for hypothesis fitness.1How Baldwin Effect is differ from Lamarckian Evolution?2State Gibbs algorithm.3

PART – C: (Long Answer Questions)

(6 x 5 = 30 Marks)

Answ	er ANY FIVE questions	Marks	[CO#]	[PO#]				
3.	How the Heuristic Space Search implemented and give the working procedure.	(6)	1	1				
4.	Demonstrate the significant aspect of Boolean functions and their classes with suitable example.	(6)	1	1				
5.	Write a prototypical genetic algorithm for the fitness function for ranking candidate hypotheses	(6)	2	1				
6.	Develop an algorithm for stacking the blocks that spells the word "universal"	(6)	2	1				
7.	Illustrate the derivation of k means algorithm.	(6)	3	2				
8.	Create a Sample Python code Using EM to Parameterize a Gaussian Mixture Model	(6)	3	2				
9.	With the help of weighted majority algorithm prove Relative mistake bound	(6)	4	3				
10.	How the radial basis function is implemented in machine learning	(6)	4	3				
End of Paper								