QP	C: RJ1800	1173		AR	- 18	}	Reg. No.								
NUMBER OF TAXABLE PARTY		GI	ЕТ МА			n Degre	UTONON e Examina	tion	s, Ju				. – 70	6502	22
THE REAL PROPERTY IN				(Sixth Semester) BCEPE6050 - PRESTRESSED ENGINEERING (Civil Engineering)											
Tin	ne: 2 hrs					(C)	ivii Engine	erm	g)		M	axim	um: 5	50 Ma	arks
				1	Answ	er ALL	Questions								
]	The figur	es in t	he ri	ght hand	margin ind	licate	e ma	rks.					
I	PART – A	A: (Multiple)	Choice Q	uesti	ons)						(1 x	10 =	: 10 N	Iarks	s)
<u>Q.1.</u>	Answei	ALL questi	ons										[CO#	[!]] [I	PO#]
a.	What a	e the classif	ications	of pre	estres	sed cond	crete structu	res?					CO1	P	01
	(i)	Externally		-		(ii)	Pretensior			post					
		prestressed					tensioning								
	(iii)	Partial or f	-		-	(iv)	All of the	abov	/e						
b.		isioned mem			•		~ ~ ~	~				(CO1	P	01
	(i)	Long or Structures	Shor	t S	pan	(ii)	Short Spa	n Str	uctu	ires o	nly				
	(iii)	Both of the	m			(iv)	None of the	nem							
c.	In Mag	nel-Blaton S	ystem th	e typ	e of v	vedge us	sed is					(CO1	P	01
	(i)	Circular tag	pered we	edge		(ii)	Rectangul	ar fl	at w	edge					
	(iii)	steel bars w	vith threa	nded e	nds	(iv)	Tapered f	lat w	edg	e					
d.	The des	irable ratio	of bread	th of	flang	e to effe	ctive depth,	, for	uns	ymme	etrica	al (CO2	P	01
	I section	n, should be	in the ra	nge o	f										
	(i)	0.8 to 1.0				(ii)	0.6 to 0.8								
	(iii)	0.6 to 1.0				(iv)	0.4 to 0.6								
e.	Unequa provide	l stress dis d	tribution	at tl	ne an	chorage	zone occu	ırs v	vher	1	•••••1	is (CO2	P	01
	(i)	Single Concentric	Plate	with	nout	(ii)	Double A	ncho	r Pl	ates					
	(iii)	concentrica	ally anch	ored		(iv)	All of the	abov	/e						
f.	If No to	ensile stress	•		ed u	. ,	vice loads a	and t	the s	struct	ure i	is (CO3	P	01
	crack fr	ee at the wo	rking loa	ad the	n it is	s classifi	ed as								
	(i)	Type I stru	cture			(ii)	Type II st	ructu	ire						
	(iii)	Type III str	ructure			(iv)	Type IV s	truct	ure						
g.	The ma	gnitude of d	eflection	of a	presti	ressed b	eam is direc	tly p	rop	ortior	nal to) (CO4	P	01
	(i)	Modulus concrete	of elast	ticity	of	(ii)	Second m		nt of	area	of th	e			
	(iii)	Prestressin	g force	in	the	(iv)	All of the		/e						
h.								(CO4	\mathbf{P}_{i}	01				
	(i) Stress-Strain Diagram (ii) Bilinear Moment - Curvature relationship									_					
	(iii) Bending Moment Diagram (iv) None of the above														
i.		ditional mor	-		ata	. ,			ndar	nt rea	ctior	is (CO5	P	01
1.		ed as a cons											200	•	J I

	(i)	Primary Moment	(ii)	Secondary Moment			
	(iii)	Resultant Moment	(iv)	Bending Moment			
j.	A tendon profile in which the eccentricity is proportional at all cross sections CO5						
	to the bending moment caused by any loading on a rigidity supported statically						
	indeter	minate					
	(i) St	(i) Straight profile (ii) Parabolic profile					
	(iii) Inc	clined profile	(iv) Co	ncordant profile			

Г	AKI – D. (Short Answer Questions) ($2 \times 5 = 10$ Warks)			
<u>Q.2</u>	. Answer ALL questions	[CO#]	[PO#]		
a.	Why high strength is concrete is necessary for prestressed concrete members?	CO1	PO1		
b.	Enumerate load balancing concept.	CO2	PO1		
c.	What is meant by bursting force?	CO3	PO1		
d.	Mention factors affecting the deflection of the prestressed concrete beam?	CO4	PO1		
e.	What are the advantages of statically indeterminate prestressed concret structures?	e CO5	PO1		

PART – C: (Long Answer Questions)

DADT B. (Short Answer Questions)

Marks [CO#] [PO#] Answer ANY FIVE questions 3. A rectangular beam of 250 mm wide and 400 mm deep is prestressed by PO2 (6) CO2 means of 16 wires of 5 mm diameter located at 70 mm from the bottom of the beam and 3 wires of diameter 6 mm, 25 mm from the top. The initial 920 N/mm². The beam supports prestress applied on the wires is an UDL of 8 kN/m over a length 6 m. Assume density of concrete as 24.5 kN/m³. Evaluate the maximum working stress in concrete. 4. A pretensioned beam 200 mm \times 300 mm is prestressed by 10 wires each of (6) CO3 PO2 7 mm diameter, initially stressed to 1200 MPa with their centroids located 100 mm from the soffit. Estimate the final percentage loss of stress due to deformation, creep, shrinkage and relaxation. elastic Assume relaxation of steel stress = 60 MPa, $E_s = 210$ GPa, $E_c = 36.9$ GPa, creep coefficient = 1.6, and residual shrinkage strain = 3×10^{-4} . 5. A prestressed concrete beam of span 6 m with a rectangular section of (6) CO2 PO₂ $120 \text{ mm} \times 300 \text{ mm}$ supports a UDL of 4 kN/m, which includes self-weight. The beam is concentrically prestressed by a cable carrying force of 180 kN. Locate the position of thrust line. 6. Briefly discuss about the Magnel's Method for design of anchorage zone. (6) CO4 PO1 A prestressed concrete beam of size $120 \text{ mm} \times 300 \text{ mm}$ having span 6 m 7. (6) CO4 PO3 supports an imposed load of 4 kN/m. The beam is prestressed by a straight cable carrying an effective force of 280 kN at an eccentricity of 80 mm from centroid of the section. Take modulus of elasticity of concrete as 36.5 kN/mm² and unit weight as 24.5 kN/m³. Compute the deflection at the following stages and check whether they comply with the IS code specifications.

upward deflection under prestress + self-weight (i)

 $(6 \times 5 = 30 \text{ Marks})$

 $(2 \times 5 - 10 \text{ Marks})$

- (ii) final deflection under prestress + self-weight + imposed load including the effect of creep and shrinkage. Take creep coefficient = 1.8.
- 8. Write the expression for defection of prestressed member with trapezoidal (6) CO4 PO1 tendon with neat sketch.
- 9. A continuous beam ABC having spans AB = 10 m and BC = 10 m with (6) CO5 PO4 uniform cross section 100×300 mm is prestressed by a cable carrying effective force of 360 kN. The cable is placed parallel to the axis of the beam at a distance 100 mm from the soffit. (i) Determine the secondary moment and resultant moment at the central support 'B' (ii) If the beam supports an imposed load of 1.5 kN/m, calculate the resultant stresses at top and bottom of the beam at B. Take the density of concrete as 24 kN/m³.
- 10. Two simply supported beams AB = BC = 10 m of rectangular section (6) CO5 PO4 200×600 mm, each post-tensioned by means of two parabolic cables with a prestressing force of 300 kN having eccentricities of zero at supports and 150 mm at mid span are converted into continuous beam by tensioning a parabolic cap cable carrying a force of 300 kN. The ends of the cap cable are located at 3m from the central support. The cable centre is 50 mm from the top of the beam over the central support B.
 - (i) Calculate the secondary moment induced at B.
 - (ii) Locate the resultant line of thrust through the beam AB.
 - (iii) Resultant stresses at top and bottom

--- End of Paper ---