AR - 19

Reg. No.

Time: 2 hrs

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester – Regular) Examinations, June – 2021 BHSEE4060 / BHSEL4060 / BHSME4060- OPTIMIZATION IN ENGINEERING

(Common to EE, EEE and Mechanical Engg.)

Maximum: 50 Marks

	An	swer ALL Questions		
	The figures in the	right hand margin indicate marks.		
) = 10 Marks)			
<u>Q.1</u>	[CO#]	[PO#]		
a.	is a mathematical to	1	1	
	allocating limited resource among the			
	(i) Linear Programming problem			
	(iii) Non linear Programming Problem	(iv) Replacement Problem		
b.	A set of feasible solution to a Linear	Programming Problem is	1	1
	(i) convex	(ii) triangle		
	(iii) bold	(iv) polygon		
c.	The coefficient of slack\surplus varia assumed to be	bles in the objective function are always	1	1
	(i)1	(ii) M		
	(iii)0	(iv) -M		
d.	The assignment problem is always a	matrix.	2	1
	(i) circle	(ii) square		
	(iii) triangle	(iv) rectangle		
e.	When the total demand is equal to su said to be	pply then the transportation problem is	2	1
	(i) unbalanced	(ii) maximization		
	(iii) balanced	(iv) minimization		
f.	The process that performs the service	es to the customer is known as	3	1
	(i) service channel	(ii) queue		
	(iii) server	(iv) customers		
g.	A queuing system is said to be a	when its operating	3	1
	characteristic are dependent upon tim			
	(i) steady state	(ii) pure death model		
	(iii) transient state	(iv) pure birth model		
h.	The calling population is assumed to	3	1	
	(i) capacity of the system is infinite	(ii) arrivals are independent of each other		
	(iii) all customers arrive at once	(iv) service rate is faster than arrival rate		
i.	Which of the following function is co		4	1
	(i) $f(x)=10-x^2$	(ii) $f(x)=x^4+6x^2+12x$	•	-
	(i) $f(x) = x^4 + x^2$	(iv)None of the above		
j.		ction on a convex set is also a	4	1
J.				-

of that function.	
(i)Global minimum	(ii)local maximum
(iii) Global maximum	(iv)local minimum

P	ART – F	B: (Short A	Answ	er Qu	iestio	ns)				$(2 \times 5 = 1)$	0 Mark	s)
<u>Q.2.</u>	Answer	ALL questi	ons							[CO	#] [F	O#]
a.	What is	sensitivit	y anal	ysis?						1		1
b.	Write the problem		nce t	oetwe	en the	e tran	sporta	tion probl	em and the assignn	nent 2		1
c.	State B	ellman's p	orincip	ole of	optim	ality				3		1
d.		o the letter ig model r		•	nboli	c repr	esenta	tion (a / b	/ c):(d / e) of a	3		1
e.	State th	e special c	cases i	in Kul	hn-Tu	icker (Condi	tions.		4		1
P	ART – C	C: (Long A	Answe	er Qu	estio	ns)				(6 x 5 = 3	0 Mark	s)
Answei	r ANY F.	IVE quest	ions							Marks	[CO#]	[PO#]
3. U	se simple	ex method	to							(6)	1	2
Ν	fax Z = 3	$3x_1 + 2x_2 + $	+5 <i>x</i> ₃	Subje	ct to							
x_1	$+4x_2 \leq$	420, $3x_1$	$+2x_{3}$	≤460), <i>x</i> ₁ +	$-2x_2$ -	$+x_3 \leq$	430 & x_1 ,	$x_2 \ge 0$			
4. U		ty to solve			-					(6)	1	2
	Mi	$\ln z = 2x_1$	$+2x_{2}$	Sub	ject t	0						
	$2x_1 + 4x_2$	≥ 1 , $-x_1$	$-2x_{2}$	≤ -1	$, 2x_1$	$+x_{2}$	≥1&.	$x_1, x_2 \ge 0$				
5. S	Solve the	transporta	ation p	oroble	em:				_	(6)	2	2
				1	2	3	4	Supply				
			Ι	21	16	25	13	11				
		Factory	II	17	18	14	23	13				
			III	32	27	18	41	19				
		Demand		6	10	12	15					
6. S	olve the	following	mixe	d inte	ger pr	ogran	nming	, problem	_	(6)	2	2
Ν	fax Z = 2	$x_1 + x_2 $	Subje	ct to t	he coi	nstraii	nts					
	$2x_1 + 5x_2$	≤16										
($5x_1 + 5x_2$	$\leq\!30$, $x_{\!2}$	≥0, x	r ₁ is n	on ne	gative	e integ	gers				
7. S	Solve the	following Max Z =		-	•	mic p	rogra	nming pri	nciples	(6)	3	2
	Subie	ct to the c	onstra	ints								

Subject to the constraints

$$2x_1 + x_2 \le 43$$
$$2x_2 \le 46$$
& $x_1, x_2 \ge 0$

8. A vessel is to be loaded with stocks of 3 items. Each item 'j' has a weight of w_j (6) 3 2 and a value of v_j . The maximum cargo weight the vessel can take is 5 and the details of three items are as follows:

j	W_{j}	v_{j}
1	1	30
2	3	80
3	2	65

Develop the recursive equation for the above case and find the most valuable cargo load without exceeding the maximum cargo weight by using dynamic programming.

9. Solve the Non-linear programming problem using the Lagrangian method. (6) 4 2

(6)

4

2

Optimize, $Z = 4x_1^2 + 2x_2^2 + x_3^2 - 4x_1x_2$

Subject to the constraints $x_1 + x_2 + x_3 = 15$

 $2x_1 - x_2 + 2x_3 = 20$

$$x_1, x_2, x_3 \ge 0$$
.

10. Solve the NLP by using Kuhn-Tucker Conditions

 $\operatorname{Min} \mathbf{Z} = -\mathbf{x}_1^2 + 2\mathbf{x}_2^2 + 3\mathbf{x}_3^2$

Subject to the constraints

$$x_1 - x_2 - 2x_3 \le 12$$

$$x_1 + 2x_2 - 3x_3 \le 0.8$$

$$x_1, x_2, x_3 \ge 0$$

--- End of Paper ---