AR 19

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester – Regular) Examinations, June – 2021 BPCCH4050 – Numerical Methods in Chemical Engineering

(Chemical Engineering)

1m	e: 2 hrs	Anowa	r ATT 4	Questions	num: 50	warks
				margin indicate marks.		
PA	RT – A:	(Multiple Choice Questions)		8	10 = 10 N	larks)
Q .1	l. Answe	er ALL questions			[CO#]	[PO#
a.	In Regu	la-falsi method, to reduce the number of	iteratio	ns, we start with	1	1
	(i)	Smaller interval	(ii)	Bigger interval		
	(iii)	Infinite interval	(iv)	Semi closed interval		
b.	The rate of convergence in Newton-Raphson method is of order					2
	(i)	3	(ii)	6		
	(iii)	2	(iv)	1		
c.	Gauss-S	Seidal method is			2	1
	(i)	Iterative method	(ii)	Direct method		
	(iii)	Indirect method	(iv)	Analytical method		
d.	The power method will work satisfactorily only if 'A' has a eigen value					2
	(i)	Distinct	(ii)	Similar		
	(iii)	Dominant	(iv)	Unique		
e.	What is	s the limitation of Gauss-Seidal method?			2	1
	(i)	It cannot be used for the matrices with non-zero diagonal elements.	(ii)	It is more complex than any other methods		
	(iii)	It does not guarantee the convergence of each and every matrix.	(iv)	It is an iterative technique.		
f.	Runge-Kutta method is used to solve type of equations.				1	2
	(i)	Differential equations	(ii)	Difference equations		
	(iii)	Quadratic equations	(iv)	Algebraic equations		
g.	In solv	ing equation $u_t = \alpha^2 u_{xx}$ by Crank-Nic	cholson	method, to simplify method, we take	3	1
	$(\Lambda x)^2$					
	$\frac{(2n)}{\alpha^2 k}$	as				
	(i)	1/2	(ii)	2		
	(i) (iii)	1	(iv)	0		
h.		s correction formula is given by	(1)	0	2	3
	(i)	$y_{n+1}, C = y_{n+1} + \frac{h}{2}(y'_{n-1} - 4y'_n + y'_{n+1})$	(ii)	$y_{n+1}, C = y_{n-1} + \frac{h}{3}(y'_{n-1} + 4y'_n + y'_{n+1})$	2	5
	(iii)	$y_{n+1}, C = y_{n-1} + \frac{h}{3}(y'_{n-1} + 2y'_n + y'_{n+1})$		$y_{n+1}, C = y_{n-1} + \frac{h}{3}(y'_{n+1} + 4y'_n - y'_{n+1})$		
i.	Milne's	s method is a self-starting method		3	1	2
	(i)	True	(ii)	False	1	-
	(i) (iii)	Cannot be determined	(iv)	None of these		
j.	. ,			lues of 'y' prior to the required value of	2	2
J.	'y'.					
	(i)	3	(ii)	6		
	× /		· /			
	(iii)	2	(iv)	4		

PART – B: (Short Answer Questions)

(2 x 5 = 10 Marks)

<u>Q.2.</u>	Answer ALL questions	[C0	C#]	[PO#]	
a.	a. State the order of convergence and convergence condition for Newton's Raphson method.			1	
b.	b. Write down the formula for numerical differentiation of 'y' with respect to 'x' once.			2	
c.	c. Write down the Crank-Nicholson formula to solve $u_t = u_{xx}$.		3	2	
d.				3	
e.	What is the condition to apply Adams-Bashforth method?	4		1	
PAR	T – C: (Long Answer Questions)	(6 x 5 = 30 Marks)			
Ans	wer ANY FIVE questions	Marks	[CO#	[‡]] [PO#]	
3.	Find the smallest positive root of the equation $x^3 - 2x + 0.5 = 0$ by Newton-Raphson's formula.	(6)	1	1	
4.	Solve the following system of equations by Gauss-Seidal iteration method.	(6)	1	2	
	4x + 2y + z = 14				
	$\mathbf{x} + 5\mathbf{y} + \mathbf{z} = 10$				
	x + y + 8z = 20				
5.	Using modified Euler method, find the solution of initial value problem $\frac{dy}{dx} = \log(x + y)$, $y(0) = 2$ at $x = 0.2$ by assuming $h = 0.2$.	(6)	3	3	
6.		(6)	2	2	
0.	$\frac{dy}{dx} = x^2 (1+y), \ y(1) = 1, \ y(1.1) = 1.233, \ y(1.2) = 1.548, \ y(1.3) = 1.979,$	(0)	2	2	
	evaluate $y(1.4)$ by Adam's-Bashforth method.				
7.	Evaluate $\int_{0}^{2} \frac{1}{x^{2} + 4} dx$ using Romberg's method. Hence obtain an approximate	(6)	4	3	
	value for ' π '.				
8.	Find the value of $y(1.1)$ using Runge-Kutta method of the third order given that	(6)	3	2	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = y^2 + xy; y(1) = 1.$				
9.	Solve by Crank-Nicolson's method $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$, $u(x, 0) = 0$,	(6)	3	2	
	$u(0, t) = 0, u(1, t) = 100t$. Compute 'u' for one step with $h = \frac{1}{4}$.				
10.	Solve the differential equation $\frac{d^2y}{dx^2} - y = x$ with $y(0) = 0$, $y(1) = 0$ with $h = \frac{1}{4}$	(6)	4	1	