Reg. No AR 19

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester - Regular) Examinations, June - 2021

BPCCH4020 / BPCPR4020 - CHEMICAL ENGINEERING

THERMODYNAMICS

(Common to Chemical Engg. & PRE)

Maximum: 50 Marks

Time: 2hrs **Answer ALL Questions** The figures in the right hand margin indicate marks. **PART – A: (Multiple Choice Questions)** (1 x 10 = 10 Marks) Q.1. Answer ALL questions [CO#] [PO#] 1 1 Which one of the following is called as a path function a. (i) Temperature (ii) Volume (iii) work (iv) pressure Compressibility factor of an ideal gas is ---1 1 b. 0 1 (i) (ii) (iii) 2 (iv) 0.5 For a binary ideal solution if x1 and x2 are the mole fraction of the components 1 and 3 1 c. 1 respectively. Then (i) $x_1 + x_2 = 0$ (ii) $x_1 + x_2 = -1$ (iv) $x_1 + x_2 = \infty$ (iii) $x_1 + x_2 = 1$ Raoults's law states that the of a component over an ideal solution is directly d. 3 1 proportional to its mole fraction in the solution. (i) Partial pressure (ii) Temperature (iii) Chemical potential (iv) activity The ratio of fugacity to fugacity at standard sate is called the 2 1 e. (i) activity (ii)activity coefficient (iii) Fugacity coefficient (iv) chemical potential f. The excess property of component can be schematically represented by 2 1 (i) $H^{E} = H - H^{id}$ (ii) $H^E = H^{id} - H$ (iii) $H^E - H^{id} = H$ (iv) $H^E = H^{id} + H$ The value of activity coefficient for an ideal solution is 2 1 g. (i) one (ii) zero (iii) equal to Henry's law constant (iv) equal to vapour pressure Acetylene is catalytically hydrogenated to ethylene at 1500 K and 1 bar. Starting with 4 1 h. an equimolar mixture of acetylene and hydrogen what will be the overall equilibrium

 $C_2H_2 \rightarrow 2C + H_2$ K = 5.2

	$2C + H_2 \rightarrow C_2 H_4$	K = 0.1923
(i) 0.2		(ii)0.4
(iii)0.5		(iv) 1.0

For highly favourable chemical reaction, the standard free energy change is 4 1 i.

(i) zero

constant? Assume ideal gases.

	(iii) positive	(iv) Negative			
j.	Equilibrium constant and Gibbs free energ (i) $\Delta G^0 = RT lnK$ (iii) $\Delta G^0 = -R lnK$	gy relation given by the following relati (ii) $\Delta G^0 = -RT lnK$ (iv) $\Delta G^0 = -RT$	on	4	1
PAI	RT – B: (Short Answer Questions)		(2 x 5	= 10 M	arks)
<u>Q.2.</u>	Answer ALL questions		[C	CO#] [PO#]
a.	Theorem of law of corresponding state			1	1
b.	Define Non-ideal solutions			3	1
c.	Lewis Randall Rule			2	1
d.	Differentiate homogenous and heterogeneous	ous reaction?		4	1
e.	Write the effect of temperature on the equi	ilibrium constant.		4	1
	RT – C: (Long Answer Questions)		(6 x 5 :	= 30 Ma	nrks)
-	nissing data my suitably be assumed Yer ANY FIVE questions		Marks	[CO#]	[PO#]
3.	Calculate the volume occupied by one mo	ble of oxygen at 300 K	(6)	1	1
	and 100 bar using				
	(a) The ideal gas law				
	(b) The van der Waals equation.				
	Take $a = 0.1378$ N m ⁴ /mol ² and $b = 3.18$	$\times 10^{-5} \text{ m}^{3}/\text{mol.}$			
4.	Derive the Q,W, ΔU , and ΔU relation for	the following Process	(6)	1	2
	a) Constant volume processb) Constant pressure processc) Constant temperature process				
5.	Assuming Raoults law to be valid for the and the vapor pressures given by Antoine		(6)	2	1
	$lnP_1^{sat} = 13.885$	$58 - \frac{2788.51}{T - 52.41}$			
	$lnP_2^{sat} = 14.004$	$45 - \frac{3279.47}{T - 60.00}$			
	Where P is in kPa and T is in K.				
	Calculate P-x-y data at 373 K. and Tabul fractions.	ate the values for various mole			
6.	For a binary system draw the graphical d	iagram and explain the following	(6)	2	2
	(i) T-xy diagram				
	(ii)P-xy diagram				
	(iii) xy diagram				
7.	At 300 K and 1 bar the volumetric data cyclohexane are represented by $V = 109$ $10^{-6}x_1^2$, where x ₁ is the mole fraction m3/mol. Find expression for the part	$.4 \times 10^{-6} - 16.8 \times 10^{-6} x_1 - 2.264 \times$ of benezene and V has the units of		3	1

cyclohxane.

8. Do the following equation satisfy Gibbs- Duhem equations?

 $ln\gamma_1 = Ax_2^2 + Bx_2^2(3x_1 - x_2)$ $ln\gamma_2 = Ax_1^2 + Bx_1^2(x_1 - 3x_2)$

- 9. A gas mixture containing 12mol% SO₂, 8mol%O₂ and 80mol% N₂ is fed to a (6) 4 2 catalyst chamber containing 1 atm 610°C for conversion in to SO₃. What is equilibrium conversion of SO₂ to SO₃. The reaction is $SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$
- Acetic acid is esterified in the liquid phase with ethanol at 100°C and (6) 4 2 atmospheric pressure to produce ethyl acetate and water according to the reaction.

$$CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$$

If initially there is one mole each of acetic acid and ethanol, estimate the mole fraction of ethyl acetate in the reacting mixture at equilibrium.

Component	ΔH^0_{298}	ΔG^0_{298}
Acetic acid	-484,500J	-389,900J
Ethanol	-277,690J	-174,780J
Ethyl acetate	-463250J	-318,280J
Water	-285,830J	-237,130J

--- End of Paper ---

(6) 3

1