Reg. No AR 19

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Fourth Semester - Regular) Examinations, June - 2021

BESAG4070 – Thermodynamics, Heat and Mass Transfer

(Agricultural Engineering)

Maximum: 50 Marks

Answer ALL Questions									
The figures in the right hand margin indicate marks.PART – A: (Multiple Choice Questions)(1 x 1)									
<u>Q.</u>	1. Answ	ver ALL questions			[CO#]	[PO#]			
a.		en system is one in which		CO1	PO1				
	(i)	Mass does not cross boundaries of the system, through energy may do so	(ii)	Neither mass nor energy crosses the boundaries of the system					
	(iii)	Both energy and mass crosses the boundary of the system	(iv)	Mass crosses the boundary the boundary but not energy					
b.	Properties of substances like pressure, temperature and density in thermodynamic coordinates are					PO1			
	(i)	Path function	(ii)	Point function					
	(iii)	Cyclic function	(iv)	Real function					
c.	Zeroth	law of thermodynamics			CO1	PO1			
	(i)	Deals with conversion of mass and energy	(ii)	Deals with reversibility and irreversibility of process					
	(iii)	States that if two systems are both in equilibrium with a third system, they are in thermal equilibrium with each other	(iv)	Deals with heat engines					
d.	A heat exchange process in which the product of pressure and volume remains constant is known as					PO1			
	(i)	Heat exchange process	(ii)	Throttling process					
	(iii)	Isentropic process	(iv)	Hyperbolic process					
e.	Kelvin	Planck's law deals with			CO2	PO1			
	(i)	Conservation of heat	(ii)	Conservation of work					
	(ii)	Conversion of heat into work	(iii)	Conversion of work into heat					
f.	. The enthalpy of dry saturated steam			with the increase of pressure	CO3	PO1			
	(i)	Decreases	(ii)	Increases					
	(iii)	Remains constant	(iv)	All of the above					
g.	Superheated vapour behaves like				CO3	PO1			
	(i)	Exactly as gas	(ii)	Liquid					
	(iii)	Ordinary vapour	(iv)	Approximately as a gas					
h.	In free convection heat transfer, Nusselt number is function of					PO1			
	(i)	Grashoff number and Reynold number	(ii)	Prandtl number and Reynold number					
	(iii)	Grashoff number and Prandtl number	(iv)	Grashoff number, Reynold number and Prandtl number					

Time: 2 hrs

i.	The critical radius is the insulation radius at which the resistance to heat flow is(i)Maximum(ii)Minimum(iii)Zero(iv)None of these		CO3	PO1
j.	The ratio of emissive power and absorptive power of all bodies is the same and is of to the emissive power of a perfectly black body. This statement is known as(i)Kirchoff's law(ii)Stefan's law(iii)Wien's law(iv)Planck's law	equal	CO4	PO1
PA	RT – B: (Short Answer Questions)	(2 x 5 = 10 Marks)		
<u>Q.2</u>	Answer ALL questions	[[CO#]	[PO#]
a.	What is meant by thermodynamic system? How do you classify it?	(CO1	PO1
b.	Define: Specific heat capacity at constant pressure.	(CO1	PO1
c.	State the Kelvin – Plank statement of second law of thermodynamics	(CO2	PO1
d.	Define triple point		CO3	PO1
e.	Distinguish between a black body and gray body.	(CO4	PO1
PA	RT – C: (Long Answer Questions)	(6 x 5 = 30 Marks)		
Ans	wer ANY FIVE questions	Marks	[CO#]	[PO#]
3	Derive steady flow energy equation.	(6)	CO1	PO1
4	10 kg of fluid per minute goes through a reversible steady flow process. The properties of fluid at the inlet are: $p_1 = 1.5$ bar, $\rho_1 = 26$ kg/m ³ , $C_1 = 110$ m/s and $u_1 = 910$ kJ/kg and at the exit are $p_2 = 5.5$ bar, $\rho_2 = 5.5$ kg/m ³ , $C_2 = 190$ m/s and $u_2 = 710$ kJ/kg. During the passage, the fluid rejects 55 kJ/s and rises through 55 metres. Determine: (i) the change in enthalpy and (ii) Work done during the process.	(6)	CO1	PO2
5	Explain the working of Carnot cycle and derive the expression for its Thermal efficiency.	(6)	CO2	PO1
6	3 kg of water at 80° C is mixed with 4 kg of water at 15° C in an isolated system. Calculate the change of entropy due to mixing process.	(6)	CO2	PO2
7	Explain the following terms relating to steam formation. (i) Sensible heat (ii) Latent heat of evaporation (iii) Dryness fraction of steam (iv) Enthalpy of wet steam.	(6)	CO3	PO1
8	An exterior wall of a house may be approximated by a 0.1 m layer of common brick ($k = 0.7 \text{ W/m}^{0}\text{C}$) followed by a 0.04 layer of gypsum plaster ($k = 0.48 \text{ W/m}^{0}\text{C}$). What thickness of loosely packed rock wool insulation ($k = 0.065 \text{ W/m}^{0}\text{C}$) should be added to reduce the heat loss or gain through the wall by 80%?	(6)	CO3	PO2
9	Calculate the following for an industrial furnace in the form of black body and emitting radiation at 2500° C.	(6)	CO4	PO2
	(i) Monochromatic emissive power at $1.2 \ \mu m$ length. (ii) Wavelength at which the emission is maximum. (iii) maximum emissive power (iv) Total emissive power (v) Total emissive power of the furnace if it is assumed as a real surface with emissivity equal to 0.9.			
10	Derive an expression for Logarithmic Mean Temperature Difference for parallel flow heat exchanger.	(6)	CO4	PO1