QPC: RS20BTECH211	
-------------------	--

AR 19

_	3 T
Reg.	No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Second Semester - Regular) Examinations, September - 2021

BBSBS1021 – ENGINEERING PHYSICS

(Common to all branches)

Time: 2 hrs Maximum: 50 Marks

	Answ	er ALL Questions			
$\label{eq:control_problem} The \ figures \ in \ the \ right \ hand \ margin \ indicate \ marks.$ $PART-A: \ (Multiple \ Choice \ Questions) \ \qquad ($			(1 x 10 = 10 Marks)		
Q .:	1. Answer ALL questions			[CO#]	[PO#
a.	The restoring force of an oscillator is minim	um atposition.		CO1	PO1
	(i) Extreme	(ii) Mean			
	(iii) Both extreme and mean	(iv) None			
b.	A particle executes SHM with amplitude where the particle will pass half PE and ha	<u>*</u>	ean	CO1	PO2
	(i) 6	(ii) 8			
	(iii) 10	(iv) 12			
c.	The velocity of the longitudinal wave in a Bulk modulus $B=12\times10^{11} N/m^2$ is		and	CO1	PO2
	(i) $1.11 \times 10^4 \text{ m/s}$	(i) $1.11 \times 10^3 \text{ m/s}$			
	(iii) $3.22 \times 10^4 \text{ m/s}$	(iv) $3.22 \times 10^3 \text{ m/s}$			
d.	The structure of optical fiber contains			CO2	PO1
	(i) Core	(ii) Cladding			
	(iii) Jacket	(iv) All of these			
e.	Superconductor behaves like a			CO3	PO1
	(i) Ferromagnetic material	(ii) Paramagnetic material			
	(iii) Diamagnetic material	(iv) None of these			
f.	Gradient of a scalar field is a			CO4	PO1
	(i) Scalar	(ii) Vector			
	(iii) Tensor	(iv) None of these			
g.	If divergence of a vector field is zero then the	ne vector is called		CO4	PO2
	(i) Irrotational	(ii) rotational			
	(iii) solenoidal	(iv) linear			
h.	Which Maxwell equation depicts the non-ex	istence of isolated magnetic poles		CO4	PO1
	(i) 1 st	(ii) 2 nd			
	(iii) 3 rd	(iv) 4 th			
i.	The minimum energy required for photoelec	etric effect is termed as		CO5	PO1
	(i) potential energy	(ii)) kinetic energy			
	(iii) threshold frequency	(iv) work function			
j.	Find the Compton shift for X-ray which is s	cattered by 60° .		CO5	PO2
	(i) 0.0122 Å	(ii) 0.122 Å			
	(iii) 1.22 Å	(iv) Zero			

Q.2.	Answer ALL questions		[CO#]	[PO#]
a.	Show that the displacement verses velocity graph for a simple harmonic oscillator ellipse.	r is an	CO1	PO1
b.	The Numerical Aperture of an optical fibre is 0.5 and the core index is 1.54. Cal the refractive index of the cladding.	culate	CO2	PO2
c.	Differentiate between step index and graded index fibers.		CO2	PO1
d.	Evaluate curl of the vector field, $\overrightarrow{B} = 2\hat{\imath} xy + 4\hat{\jmath} yz + 5\hat{k} zx$		CO4	PO2
e.	Find the de Broglie wavelength of a particle of mass 40 g, moving with speed 1km	n/s.	CO5	PO2
PA	RT – C: (Long Answer Questions)	(6 x 5	= 30 Ma	rks)
Ansv	ver ANY FIVE questions	Marks	[CO#]	[PO#]
3.	Set up the differential equations for a damped harmonic oscillator. Find the solution for the under damped oscillation.	(6)	CO1	PO1
4.	Discuss with a neat diagram that how interference fringes are produced in Newton's Ring Experiment. Derive the expression of diameter of the dark and bright rings	(6)	CO1	PO1
5.	Discuss the principle, construction and working of a He-Ne Gas laser.	(6)	CO2	PO1
6.	What is an optical fiber? Discuss the application of optical fibers in communication (FOCL) with suitable diagram. Discuss its advantages and disadvantages.	(6)	CO2	PO1
7.	What are the methods to determine the Miller Indices of a crystal plane? Find the Miller indices of a crystal plane having the intercepts $2a$, $3b$ and ∞ .	(6)	CO3	PO2
8.	Differentiate between dia, para and ferro magnetic material. Mention two applications of magnetic materials.	(6)	CO3	PO1
9.	Derive the expression for electromagnetic wave equation in terms of electric and magnetic field in free space using Maxwell's equations	(6)	CO4	PO1
10.	In a photoelectric experiment, the threshold wavelength of tungsten cathode is 2300Å· Calculate the work function of the metal if it is irradiated by a light of wavelength 1800Å· Find the maximum energy of the emitted electrons.	(6)	CO5	PO2

 $(2 \times 5 = 10 \text{ Marks})$

PART – B: (Short Answer Questions)

--- End of Paper ---