AR 19

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (Second Semester – Regular) Examinations, September – 2021

BBSBS1022 – Engineering Chemistry

(Common to all branches)

Tir	ne: 2 hrs		num: 50	Marks		
		ver ALL Questions	_			
п		ght hand margin indicate marks.	10 <u>-</u> 10 N	onka)		
PART – A: (Multiple Choice Questions) (1 x 10=10 Marks						
<u>Q.</u>]	1. Answer ALL questions		[CO#]	[PO#]		
a.	Which among the following species does not	t exist	CO1	PO1		
	(i)He ₂	(ii) Be ₂				
	(iii) Ne ₂	(iv)All				
b.	The bond order of the given species are such	n that	CO1	PO1		
	(i) $O_2^- > O_2^+ > O_2^{2-} > O_2$	(ii) $O_2^+ > O_2 > O_2^- > O_2^{2-}$				
	(iii) $O_2 > O_2^+ > O_2^- > O_2^{2-}$	(iv) $O_2^{2-} > O_2 > O_2^+ > O_2^-$				
c.	What is the total energy in 1.5×10^{13} photo.	CO1	PO2			
	m					
	(i)10J	(ii) 1.0 J				
	(iii)100J	(iv)0.1J				
d.	Select the incorrect statement from the follo	wing option.	CO2	PO1		
		(ii) The difference between the total hardness and the alkaline hardness gives the non-alkaline hardness				
	(iii) It is also known as non-alkaline hardness	(iv) It can be removed by mere boiling of water				
e.	1ppm =		CO2	PO1		
	(i)0.07°Fr	(ii) 0.7°Fr				
	(iii) 0.1°Fr	(iv) 0.01°Fr				
f.	The standard reduction potential E° for half	reactions are	CO3	PO2		
	$Zn \longrightarrow Zn^{2+} + 2e$ $E^{\circ} = +0.76 V$					
	$Fe \longrightarrow Fe^{2+} + 2e \qquad E^{o} = + 0.41 V$					
	The EMF of the cell reaction $Fe^{2+} + Zn \rightarrow$	$Zn^{2+} + Fe$ is				
	(i) -0.35V	(ii) 0.35V				
	(iii) +1.17V	(iv) -1.17V				
g.	Corrosion can be prevented by		CO3	PO1		
	(i) alloying	(ii) tinning				
	(iii) galvanizing	(iv) all of the above				
h.	Select the incorrect statement from the follo	wing option.	CO4	PO1		
	(i) Thermosets are formed by condensation polymerisation reactions	(ii) Thermosets have 3-D, cross-linked network structure				
	(iii) Thermosets soften on heating and stiffen on cooling	(iv) Thermosets are generally insoluble in any solvent				
i.	Condensation Polymerisation of pr	-	CO4	PO1		
	(i) Urea & Formaldehyde	(ii) Pyrol & Formaldehyde				
	· · · · · · · · · · · · · · · · · · ·	, j == = = j == j				

j.	(iii) Which of (i) (iii)	Phenol & Formaldehyde the following polymer is not classified Syndiotactic Crosslinked	(iv) (v) d under (ii) (iv)	Phenol & Acetaldehyde the category of configuration Isotactic Atactic	n?	CO4	PO1
PART – B: (Short Answer Questions) (2 x 10=20 Mark							
<u>Q.2.</u>	Answer A	ALL questions				[CO#]	[PO#]
a.	Calculat	e the energy and frequency of red ligh	t havin	g a wavelength of 6.80 x 10 ⁻⁵	cm	CO1	PO2
b.	What hat equation	ppens to hard water when it is heat?	ed? Ex	plain it with a balanced che	emical	CO2	PO1
c.	Calculat	e the hardness in CaCO3 equivalent at	given	water sample.		CO2	PO2
	CaCO ₃ =	10ppm, CaSO ₄ =13.6ppm, MgCl ₂ =95p	opm , M	IgSO ₄ = 12ppm			
d.	How Ion	-Exchange is better the Lime-Soda Pr	ocess?			CO3	PO1
e.	Is -[-C	H_2 -CH(C ₆ H ₅)-]n – a homoplymer or c	opolyn	ner? Write the name of monor	mer.	CO4	PO1
PA	ART – C:	(Long Answer Questions)			(6 x 5	= 30 Ma	urks)
Ansv	wer ANY F	<i>TVE</i> questions			Marks	[CO#]	[PO#]
<u>Ansv</u> 3.		own the different form of Schroding	ger wav	ve equation and mention its	Marks (6)	[CO#] CO1	[PO#] PO1
-	Write-d applicat Draw th	own the different form of Schroding	-				
3.	Write-d applicat Draw th bond di Calcula	own the different form of Schroding tions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ting the following ions per liter. M	and CO	D ⁻ and compare the stability, soften 10,000 liters of water	(6)	CO1	PO1
3. 4.	Write-d applicat Draw th bond di Calcula contain =73.2m	own the different form of Schroding tions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ting the following ions per liter. M	and CO red to s $\lg^{+2}=4.8$	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; Ca ²⁺ =16.0mg; HCO ₃ ⁻	(6) (6)	CO1 CO1	PO1 PO2
3. 4. 5.	Write-d applicat Draw th bond di Calcula contain =73.2m Explain	own the different form of Schroding ions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ing the following ions per liter. M g. demineralization process with a neat Nernst's equation and explain the ter	and CO red to s $Ig^{+2}=4.5$ labeled	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; $Ca^{2+}=16.0mg$; HCO_3^{-1} I diagram.	(6) (6) (6)	CO1 CO1 CO2	PO1 PO2 PO2
3. 4. 5. 6.	Write-d applicat Draw th bond di Calcula contain =73.2m Explain Derive its appli	own the different form of Schroding ions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ing the following ions per liter. M g. demineralization process with a neat Nernst's equation and explain the ter	and CO red to s $Ig^{+2}=4.5$ labeled	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; $Ca^{2+}=16.0mg$; HCO_3^{-1} I diagram.	(6)(6)(6)	CO1 CO1 CO2 CO2	PO1 PO2 PO2 PO1
3. 4. 5. 6. 7.	Write-d applicat Draw th bond di Calcula contain =73.2m Explain Derive its appli Find ou	own the different form of Schroding ions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ing the following ions per liter. M g. demineralization process with a neat Nernst's equation and explain the ter ication?	and CO red to s $Ig^{+2}=4.5$ labeled	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; $Ca^{2+}=16.0mg$; HCO_3^{-1} I diagram.	 (6) (6) (6) (6) (6) 	CO1 CO1 CO2 CO2 CO2 CO3	PO1 PO2 PO2 PO1 PO1
3. 4. 5. 6. 7.	Write-d applicat Draw th bond di Calcula contain =73.2m Explain Derive its appl Find ou $Cr Cr^{3+}$	own the different form of Schroding ions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ing the following ions per liter. M g. demineralization process with a neat Nernst's equation and explain the ter ication? t the potential for the cell	and CO red to s $Ig^{+2}=4.5$ labeled	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; $Ca^{2+}=16.0mg$; HCO_3^{-1} I diagram.	 (6) (6) (6) (6) (6) 	CO1 CO1 CO2 CO2 CO2 CO3	PO1 PO2 PO2 PO1 PO1
3. 4. 5. 6. 7.	Write-d applicat Draw th bond di Calcula contain =73.2m Explain Derive its appl Find ou $Cr Cr^{3+}$ Given H	own the different form of Schroding ions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ing the following ions per liter. M g. demineralization process with a neat Nernst's equation and explain the ter ication? t the potential for the cell $f(0.1 \text{ M}) \text{Fe}^{2+}(0.01 \text{ M}) \text{Fe}$	and CO red to s Ig ⁺² =4.8 labeled	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; Ca ²⁺ =16.0mg; HCO ₃ ⁻ I diagram. olved in the equation. Write	 (6) (6) (6) (6) (6) 	CO1 CO1 CO2 CO2 CO2 CO3	PO1 PO2 PO2 PO1 PO1
3. 4. 5. 6. 7. 8.	Write-d applicat Draw th bond di Calcula contain =73.2m Explain Derive its appl Find ou Cr Cr ³⁺ Given H Explain	own the different form of Schroding ions he energy level diagram for CO, CO ⁺ ssociation energy & bond length? te the amount of lime and soda requi ing the following ions per liter. M g. demineralization process with a neat Nernst's equation and explain the ter faction? t the potential for the cell $f(0.1 \text{ M}) \text{Fe}^{2+}(0.01 \text{ M}) \text{Fe}$ $E^{\circ}_{\text{Cr+/Cr}} = -0.72 \text{ V}, E^{\circ}_{\text{Fe+/Fe}} = -0.42 \text{ V}.$	and CO red to s Ig ⁺² =4.8 labeled	D ⁻ and compare the stability, soften 10,000 liters of water 8mg; Ca ²⁺ =16.0mg; HCO ₃ ⁻ I diagram. olved in the equation. Write	 (6) (6) (6) (6) (6) 	CO1 CO1 CO2 CO2 CO3 CO3	PO1 PO2 PO1 PO1 PO1 PO2

--- End of Paper ---