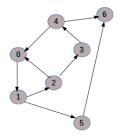
AR 19

Reg. No

GIET UNIVERSITY, GUNUPUR – 765022 B. Tech (Second Semester – Regular) Examinations, September – 2021 BESBS2040 – DATA STRUCTURES AND ALGORITHMS

(Common to All Branches)

Maximum: 50 Marks


1 1111			um: 30 N	Talks				
Answer ALL Questions								
The figures in the right hand margin indicate marks.PART – A: (Multiple Choice Questions)(1 x 10 = 10 Marks)								
$(1 \times 10 - 10 \text{ MarKs})$								
<u>Q</u> .	1. Answer ALL questions		[CO#]	[PO#]				
a.	What does it mean if $TOP = =NULL$?		CO1	PO1				
	i) The stack is FULL	ii) The stack contains only one						
		element						
	iii) The stack is Empty	iv) The stack does not exist						
b.	Which of the following formula is used to calculate Rear value during insertion in a		CO1	PO1				
	circular queue?							
	i) Rear=Rear-1	ii) Rear=(Front+1) %Size of						
		Queue						
	iii) Rear=(Rear-1) %Size of Queue	iv) Rear=(Rear+1) %Size of						
0	Here is an infit approacion: $4 + 2*(6*2, 12)$ Supp	Queue	CO1	PO2				
c.	Here is an infix expression: $4 + 3*(6*3-12)$. Supp algorithm to convert the expression from infix to post		COI	FO2				
	of symbols that will appear on the stack at one ti							
	expression is/are?	the during the conversion of this						
	(i) 1	(ii) 2						
	(iii) 3	(iv) 2 (iv) 5						
d.	In a double linked list, if we need to delete a node point		CO2	PO2				
	is suitable?	,						
	(i) Y=Prev[X], Z=Next[X], Y=Z	(ii) Y=X, X=Prev[X], Z=Y,						
		X=Next[X]						
	(iii)Next[Prev[X]]=Next[X],Prev[Next[X]]=Prev[X]	(iv) delete X						
e.	In which of the following methods, each element is co	ompared with adjacent element?	CO2	PO2				
	(i) Insertion sort	(ii) quick sort						
	(iii) bubble sort	(iv) selection sort						
f.	What is a complete binary tree?		CO3	PO1				
	(i) Each node has exactly zero or two children.	(ii) A binary tree, which is						
		completely filled from right to left						
		except last level.						
	(iii) A binary tree, which is completely filled from	(iv) A tree in which all nodes have						
~	left to right except last level	degree 2	CO4	PO1				
g.	In hashing, if two key values generate same hash addr (i) linear probing		C04	PUI				
	(i) intear probing (iii) chaining	(ii) random probing(iv) collision						
h.	An edge which started from a vertex and connects bac		CO4	PO1				
11.	(i) cycle	(ii) self loop		101				
	(iii) connected	(iv) adjacent						
i.	Which of the following is TRUE about binary tree?	· / ····	CO3	PO1				
	<i></i>							

j.	(i) It is a cyclic graph(iii) It is a simple graphIn which hashing method each Hash Key is dividedHash Address?		CO4	PO1
	(i) mid square method	(ii) chaining		
	(iii) division method	(iv) folding method		
PART - B: (Short Answer Questions)(2 x 5)Q.2. Answer ALL questions		= 10 Ma [CO#]	arks) [PO#]	
a.	State the difference between row-major order and column major order of matrix memory representation.		CO1	PO3
b.	A sequence of elements given below. Construct a Binary Search Tree. 90, 75, 49, 65, 95, 70, 20, 10, 40, 60		CO3	PO
c.	Construct an expression tree for the given arithmetic expression: $(A+B-(C/D^{*}E)^{*}F)$		CO3	PO2
d.	Elaborate the following sequence of operations are performed on an empty stack of 5		CO1	PO3

d. Elaborate the following sequence of operations are performed on an empty stack of 5 CO1 PO2 memory locations:
PUSH (1), PUSH (0), PUSH (0), PUSH (1), POP, POP, PUSH(1), PUSH(0), POP

Find the sequence of popped out items

e. Define In-degree, out-degree, cycles and find them following in the below graph: CO4 PO2

PART – C: (Long Answer Questions)			(6 x 5 = 30 Marks)		
Answer ANY FIVE questions		Marks	[CO#]	[PO#]	
3.	Write down algorithm for postfix evaluation using stack. Hence find the postfix expression: $5, 6, *, 24, 2, 3, ^, /, -$ using stack.	(6)	CO1	PO3	
4.	Write down the algorithm for conversion of infix into postfix using stack. Given infix expression: $(A + B - (C * D / E))$. Find its equivalent postfix notation using stack.	· · /	CO1	PO2	
5.	What is Binary Tree? How to represent it in memory using array and linked list? Explain the difference between them with suitable example.	(6)	CO3	PO3	
6.	What is a graph? Explain the memory representation of a graph using incidence matrix, adjacency matrix and linked representation with a suitable example.	(6)	CO4	PO3	
7.	Write down the non-recursive algorithm for pre-order traversal on a binary tree.	(6)	CO3	PO3	
8.	Write down the algorithms for insertion at end in a single linked list.	(6)	CO2	PO3	
9.	What is Balance Factor? Write down the rotations of an AVL Tree and also explain the construction of an AVL Tree during insertion of nodes	(6)	CO3	PO3	
10.	What is Hashing? Explain Folding and Mid square methods using suitable example.	(6)	CO4	PO3	

--- End of Paper ---