Reg. No

GIET UNIVERSITY, GUNUPUR – 765022

B. Tech (First Semester) Examinations, April – 2021 BBSBS1010 – ENGINEERING MATHEMATICS I

(Common to all branches)

Time: 3 hrs Maximum: 70 Mar						
		Ans	wer ALI	Questions		
D.A	DT A		right han	nd margin indicate marks.	- 10 10	N
PA	KI – A:	: (Multiple Choice Questions)		(1)	x 10 = 10	Marks)
Q.	1. Answ	ver ALL questions			[CO#]	[PO#
a.	The St	ationary point at which the function	f(x,y)	has neither maximum nor minimum	CO1	PO1
		ed as				
	(i)	Point of Maximum	(ii)	Point of Minimum		
	(iii)	Saddle Point	(iv)	None of these		
b.	If $f(x, y)$ is a Homogeneous function of degree n then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} =$			CO1	PO1	
	(i)	nf	(ii)	n(n-1)f		
	(iii)	0	(iv)	None of these		
c.	The solutions y_1 , y_2 are said to be independent if their Wronskian is			their Wronskian is	CO2	PO1
	(i)	Equal to Zero	(ii)	Not equal to Zero		
	(iii)	Equal to 1	(iv)	None of these		
d.	The integrating factor of $y' + 2y = x$ is				CO2	PO1
	(i)	e^{2x}	(ii)	e^{-2x}		
	(iii)	e^{-4x}	(iv)	e^{4x}		
e.	The fu	ndamental period of sin2x is	•		CO3	PO1
	(i)	π	(ii)	3π		
	(iii)	2π	(iv)	4 π		
f.	The su	m of Eigen values of the matrix $\begin{pmatrix} 7 \\ 0 \end{pmatrix}$	$\binom{1}{2}$ is_	.	CO4	PO1
	(i)	0	(ii)	7		
	(iii)	2	(iv)	9		
g.	The ab	solute value of Eigen value of an ort	hogonal	matrix is	CO4	PO1
	(i)	0	(ii)	2		
	(iii)	infinity	(iv)	1		
h.	A square matrix A satisfying the property $A^T = A$ then A is called as			Athen A is called as	CO4	PO1
	(i)	orthogonal	(ii)	Skew Symmetric		
	(iii)	Symmetric	(iv)	unitary		
i.	The product of Eigen values of matrix is equal to			CO4	PO1	
	(i)	sum of main diagonal elements	(ii)	always Zero		
	(iii)	determinant of the matrix	(iv)	none of these		
j.	If $u =$	$\tan^{-1}\left(\frac{y}{x}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = $			CO1	PO2
	(i)	1	(ii)	2u		
	(iii)	3u	(iv)	0		

Q.2. Answer ALL questions			[PO#]
a.	Write the Taylor's series of f(x, y) in powers of (x-a) and (y-b) up to 3 rd degree	CO1	PO1
	terms.		
b.	Discuss the condition for maxima and minima of $f(x, y)$ at a point (a, b)	CO1	PO2
c.	Under what condition the equation $(Ax + By) dx + (Cx + Dy) dy = 0$ is exact.	CO2	PO2
d.	Solve $y' + y = e^{-x} tanx$	CO2	PO2
e.	Define periodic function with example.	CO3	PO2
f.	Check for even and odd function for $f(x) = x + x^2$	CO3	PO2
g.	Define algebraic and geometric multiplicity of an Eigen value.	CO4	PO1
h.	Find the symmetric coefficient matrix of the quadratic form $Q = 4 x^2 - 8 x y + 5 y^2$	CO4	PO2
i.	Define rank of matrix.	CO4	PO1
j.	Solve $(x^2 D^2 + 3 \times D + 1)y = 0$	CO2	PO2

PART – C: (Long Answer Questions)

 $(10 \times 4 = 40 \text{ Marks})$

Answe	er ALL questions	Marks	[CO#]	[PO#]
3. a.	If $u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, $x \neq y$ then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$	7	CO1	PO2
b.	Find the total derivative of $u = e^x y$ (OR)	3	CO1	PO2
c.	Expand $f(x, y) = x^2 + xy + y^2$ in powers of $(x - 2)$ and $(y - 3)$.	5	CO1	PO2
d.	Discuss the maxima or minima of $U = x^3 + y^3 - 3axy$	5	CO1	PO2
4. a.	Solve $y'' - 4y' + 4y = \frac{e^{2x}}{x}$ by using method of variation of parameter.	8	CO2	PO2
b.	Define integrating Factor	2	CO2	PO2
c.	Solve $3y'' + 10y' + 3y = 9x + 5 \cos x$ by method of undetermined coefficients	10	CO2	PO2
5. a.	Find the Fourier series of $f(x) = x^2$ in $0 < x < 2\pi$ (OR)	10	CO3	PO2
b	Find the Fourier series of $f(x) = 3x^2 in - 1 < x < 1$.	10	CO3	PO2
6. a.	Diagnolize the matrix $\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}$ (OR)	10	CO4	PO2
b.	Find out which type of conic section is represented by Quadratic function $-11 x^2 + 84 xy + 24 y^2 = 156$	5	CO4	PO2
c	Solve the system of linear equations by Gauss Elimination method $-3x + 2y + z = 3$, $2x + y + z = 0$, $6x + 2y + 4z = 6$	5	CO4	PO2

--- End of Paper ---