QP Code: RD17001065	Reg.						AR 17
	No						

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December - 2020

(Seventh Semester) BMEPE 7043 - ROBOTICS AND ROBOT APPLICATIONS

	DIVILIE 7043	(Mechanical Engineering)	LICATION	
7	Cime: 3 hrs	`	aximum: 50 N	1 arks
	The figures in the r	ight hand margin indicate marks.		
PA	ART – A: (Multiple Choice Questions)		$(1 \times 10 = 10 \text{ M})$	Iarks)
2.1.	Answer ALL questions		[CO#]	[PO#
a.	Robot is derived from Czech word		CO1	PO1
	(i) Rabota	(ii) Rebota		
	(iii) Robota	(iv) Ribota		
b.	The main objective(s) of Industrial robo	t is to	CO1	PO1
	(i) To minimise the labour	(ii) To increase productivity		
	requirement			
	(iii) To enhance the life of production	(iv) All of the above		
	machines			
c.	Drives are also known as		CO4	PO1
	(i) Controller	(ii) Sensors		
	(iii) Manipulator	(iv) Actuators		
d.	Radial movement (in & out) to the mani	pulator arm is provided by	CO1	PO1
	(i) Wrist bend	(ii) Wrist swivel		
	(iii) Wrist yaw	(iv) Elbow extension		
e.	Industrial Robots are generally design	gned to carry which of the following	ng CO2	PO1
	coordinate system(s).			
	(i) Cartesian coordinate systems	(ii) Polar coordinate systems		
	(iii) Cylindrical coordinate system	(iv) All of the above		
f.	The Robot designed with Polar coordinate	ite systems has	CO1	PO1
	(i)Three linear movements	(ii) Three rotational movements		
	(iii) Two linear and one rotational	(iv) Two rotational and one line	ear	
	movement	movement		
g.	drive is used for lighter of	class of Robot	CO4	PO1
	(i)Pneumatic drive	(ii) Hydraulic drive		
	(iii) Electric drive	(iv) All of the above		
h.	Internal state sensors are used for measure	ring of the end effector	CO4	PO 1
	(i) Position	(ii) Position & Velocity		
	(iii) Velocity & Acceleration	(iv) Position, Velocity & Acceleration	n	
i.	is not a programming la	•		PO1
	(i) VAL	(ii) RAIL		
	(iii) HELP	(iv) AMU		DO1
j.		dvantages associated with a robot	ics CO4	PO1
	implementation program?(i) Robots work continuously around	(ii) Quality of manufactured goods of	van	
	the clock	be improved	all	
	(iii) Low costs for hardware and	(iv) Reduced company cost for worke	· r	
	software	fringe benefits	/1	

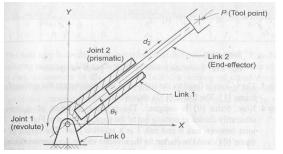
 $(2 \times 5 = 10 \text{ Marks})$

Q.2.	Answer ALL questions	[CO#]	[PO#]
a.	Differentiate CAD/CAM and robotics	CO1	PO1
b.	How many DOFs are required to position and orientation of an end effector at any point in 3-D space?	CO1	PO1
c.	What is homogenous transformation matrix?	CO2	PO1
d.	What are the different types of actuators used for robots?	CO4	PO1
e.	State the situation when you will prefer Newton-Euler and when you will prefer Lagrange Euler formulation.	CO3	PO1

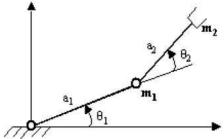
PART – C: (Long Answer Questions)

 $(6 \times 5 = 30 \text{ Marks})$ Marks

Answer ANY	FIVE of	questions


- CO₁ 3. With a neat sketch explain the three degrees of freedom associated with the robot (6) PO1 wrist
- 4. Discuss in detail the selection and design considerations of grippers in robot (6) CO₁ PO₁
- For the point [3, 7, 5] perform the following operations: (6) CO₂ PO1
 - a) Rotate 30⁰ about X-axis
 - b) Translate 8 units along y-axis
 - c) Rotate 30⁰ about x then translate 6 units along Y- axis.
 - d) Rotate 90⁰ about z-axis.
- Obtain the position and orientation of tool point 'P'

(6)CO₂ PO₁


[CO#]

[PO#]

PO₂

- 7. Determine the dynamic equations for the two-link manipulator shown in Figure, using Lagrange-Euler formulation. Assume that the whole mass of the link can be considered as a point mass located at the outermost end of each link. The masses are m_1 and m_2 and the link lengths are a_1 and a_2 .
- (6) CO₃ PO1 PO₂

- 8. Determine the manipulator jacobian matrix and singularities for the 3-DOF CO3 PO1,2 (6)articulated arm
- 9. How do you classify Tactile sensor? Explain them briefly with neat sketch (6) CO4 PO₁
- Discuss the performance characteristics of actuators. Compare electrical, CO4 PO₁ (6) pneumatic and hydraulic actuators for their characteristics

--- End of Paper ---