QPC: RD17001063	AR - 17	Reg. No.					

GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022

B. Tech Degree Examinations, December – 2020

(Seventh Semester)

		NALYSIS OF HEAT EXCHANGER						
	Time: 2 hrs	al Engineering) Maximum: 50 Marks						
	The figures in the right hand more	vin indicata marks						
	The figures in the right hand margin indicate marks.							
PA	ART – A: (Multiple Choice Questions)	$(1 \times 10 = 10 \text{ Marks})$						
Q.1.	Answer ALL questions							
a.	Water is flowing through a square duct of side 10 mm	filling 80% of its cross section. What is its						
	hydraulic diameter?							
	(i) 6 mm	(ii) 6.15 mm						
	(iii) 6.5 mm	(iv) None of the above						
b.	Which of the following is/are example/s of heat exchan	anger?						
	(i) Feed water heater in which a stream of steam is	(ii) Feed water heater in which a stream						
	directly mixed with cold water and the mixture leaves	of steam and cold water are not mixed and						
	at uniform temperature	separated by partition through which heat						
		flows						
	(iii) both	(iv) none of the above						
c.	Which of the following phases of designing of heat e	exchangers does designer consider corrosive						
	nature of the fluid in?							
	(i) The thermal analysis	(ii) The mechanical design						
	(iii) The design for manufacture	(iv) none of the above						
d.								
	C and leaving at 60 C. Estimate the exchanger effective							
	(i)0.56	(ii)0.66						
	(iii)0.76	(iv)0.86						
e.	In a thin walled heat exchanger with no fouling, the							
	(i) $A(h_0^{-1} + h_0^{-1})^{-1}$	(ii) $(h_i^{-1} + h_o^{-1})^{-1}$						
	(iii) $A(h_i^{-1} + h_o^{-1})$	(iv) $(h_i^{-1} + h_o^{-1})$						
f.	In a liquid to gas heat exchanger, it is best to put extend	<u> </u>						
	(i) This reduces fouling	(ii) The gas side heat transfer coefficient						
	/**	is small						
	(iii) It reduces drag in high speed flows	(iv) All of the above						
g.	In a condenser of a power plant, the steam condenses and according to 20°C and leaves at 45°C. The leavesthmic results are steam condenses at 45°C.							
	enters at 30°C and leaves at 45°C. The logarithmic recondenser is	nean temperature difference (LWTD) of the						
	(i) 16.2° C	(ii) 16.2° C						
	(II) 200 T							
	(iii) 30° C	(iv) 30° C						
h.		the purpose of using fins in a particular heat transfer system?						
	(i) to decrease rate of heat transfer	(ii) to increase rate of heat transfer						
	(iii) to maintain rate of heat transfer at a constant rate	(iv) None of the above						
i.	In regenerator energy is stored in							
	(i) gas medium	(ii) fluid medium						
	(iii) thermal medium	(iv) None of the above						

(ii) natural flow system

j. What type of cooling system is used in the large power plants?

(i) cooling ponds

QPC: RD17001063 AR - 17 Reg. No.

(iii) cooling towers

(iv) single deck system

PART – B: (Short Answer Questions)

 $(2 \times 5 = 10 \text{ Marks})$

Q.2. Answer ALL questions

- a. What is friction factor? What is the importance of it?
- b. What is the difference between Regenerator and Recuperator?
- c. In heat exchange between air and water across a tube wall, it is proposed to use fins to enhance the overall heat transfer coefficient. Would you put the fins on the air side or on the water side? Explain.
- d. What do you mean by hydraulic diameter and its impact on heat exchanger?
- e. What are the causes of pressure drop in shell and tube heat exchanger?

PART – C: (Long Answer Questions)

 $(6 \times 5 = 30 \text{ Marks})$

Answer ANY FIVE questions

Marks

- 3. What is the function of a heat exchanger? Explain different types of heat exchanger according to flow arrangements with neat sketches?
- 4. Discuss recuperative and regenerative type of Heat Exchangers along with their specific applications. Explain the factors to be considered while selecting heat exchangers?
- 5. Derive the effectiveness of counter flow heat exchanger. What would be the effectiveness of counter flow heat exchanger if Cmin/Cmax = 0 and Cmin/Cmax=1
- 6. When one of the two fluids undergoes phase change, show that effectiveness values for

both parallel flow and counter flow heat exchanger are equal and given by $\acute{\epsilon}=1$ - exp(-NTU).

- 7. How a tubular heat exchanger and flat plate heat exchanger work? Explain with neat sketches. What advantages does the flat plate heat exchanger have over the tube in tube heat exchanger?
- 8. Discuss with a sketch the constructional features of a shell and tube heat exchanger with a focus on shell, tube bundles, tube passes and baffles. (6)
- 9. What do you mean by differential thermal expansion? Explain the different steps required to avoid this. (6)
- 10. With a neat sketch, discuss the purpose and principle of operation of a cooling tower? Also explain different parameters used in the design of cooling towers.