QP	Code: RD17001049	Reg. No							AR 17
	GIET MAIN CAMPUS AUTONOMOUS GUNUPUR – 765022 B. Tech Degree Examinations, December – 2020 (Seventh Semester) BMEPE 7033– MECHANICAL VIBRATION (Mechanical Engineering) Time: 2 hrs Maximum: 50 Marks						Marks		
	The PART – A: (Multiple Ch	figures in t	-	nand margi	n indicat	e marks		10 - 10 1	(Jonka)
<u>Q.1.</u>	Answer ALL questions	once Questio) 5)				(1 x 10 = 10 Marks) [CO#] [PO#]		
a.	What is the beat frequency	of two wave	es with fro	equencies of	f 258 Hz a	and 262	Hz?	CO1	PO1, PO2
	(i) 2 Hz		(ii)	4 Hz					
	(iii) 8 Hz		(iv)	260 Hz					
b.	The equation $m\ddot{x} + kx = 0$	represents						CO1	PO1, 2,3
	(i) Free vibrations	_	(ii)	Forced vi			_		
	(iii)periodically forced vib	rations	(iii)	Free vit damping	orations	with v	iscous		
c.	The maximum acceleration	of a particle	e moving	with simple	e harmoni	c motion	is	CO1	PO1, PO2
	(i) 00		(ii)w.r						
	(iii) ω^2 .r		(iv) ω^2	′r					
d.	What is the effect of damp (i) Phase angle increases increases		-	resonance fi mping has r	-		angle	CO2	PO1, PO2
	(iii) Phase angle increases decreases	as damping	(iv) No	one of the ab	oove				
e.	A mass of 2 kg is attached critical damping coefficien (i) 1.40 Ns/m		em will be	-	iffness 0.	35 N/mn	n. The	CO2	PO1,2,3
	(iii) 52.92 Ns/m		. ,	9.2 Ns/m					
f.	The whirling speed of a sh (i) longitudinal vibra		with the					CO3	PO1, PO2
	(iii)torsional vibrations		(iv)cou	pled betwee	en torsion	al vibrati	ions		
g.	In balancing of single-cylin (i) completely made zero the reciprocating unbalance	and so also	(ii) c	ompletely cating un	made z	ero and		CO3	PO1, PO2
	(iii) partially reduced reciprocating unbalance is made zero	and the completely	-	artially red cating unba		l so als	o the		
h.	Which of the following ins	truments me	asure am	plitude of a	vibrating	body?		CO3	PO1, PO2
	(i) Vibrometers			ismometer	0	-			·
	(iii) Both a. and b.		(iv) No	one of the ab	ove				
i.	The systems having one of	their natura	-	-		known a	S	CO4	PO1, PO2
	(i)definite systems			ni-definite s	ysteins				
:	(iii)coupled systems	will have m	. ,	e of these	mbor of r	odes		CO4	PO1, PO2
j.	A shaft having three rotors (i) no node	will have m	_aximum (ii) on			loues		004	F 01, F 02
	(i) no node (iii) two nodes			ee nodes					

	PART – B: (Short Answer Questions)	$(2 \times 5 =$	= 10 Marks	;)
<u>Q.2.</u>	Answer ALL questions		[CO#]	[PO#]
a.	A car having a mass of 1500 kg deflects its spring by 3 cm under its own load. F natural frequency of car in vertical direction.	ind the	CO1	PO3
b.	State different methods of finding natural frequency of a system		CO1	PO1, 2
c.	What are the various types of damping?		CO2	PO1, 2
d.	Define vibration isolation and State the importance of it.		CO3	PO1, 2
e.	In torsional vibrations, the node is always closer to the rotor with high moment of i Justify	nertia -	CO4	PO1, 2, 3

PART – C: (Long Answer Questions) (6 x 5 = 30 Marks)

Answer ANY FIVE questions

3. A harmonic motion is given by $x(t) = 10\sin(30t - \frac{\pi}{3})$ mm where t is in seconds and (6) CO1 PO1, phase angle in radians. Find (i) frequency and the period of motion, (ii) the maximum displacement, velocity and acceleration. PO3

Marks

[CO#]

[PO#]

4. A mass is suspended from a spring from a spring system as shown in Fig.2 Determine (6) CO1 PO1, the natural frequency of the system. PO2

 $k_1 = 5000 \text{ N/m}, k_2 = k_3 = 8000 \text{ N/m}$ an m = 25 kg

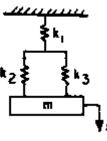


Fig.2

5.	For the system shown in Fig.3, find			CO2	PO1,
	i) ii)	undamped natural frequency			PO2, PO3
	11)	critical damping coefficient, C _c			

- iii) If $C = \frac{Cc}{2}$, find the damped natural frequency
- iv) Determine the logarithmic decrement

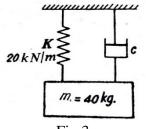


Fig.3

6.	Explain briefly about viscous and Coulomb damping with neat diagrams.	(6)	CO2	PO1, PO2, PO3
7.	A mass of 50 kg suspended from a spring produces a static deflection of 0.017 m and when in motion, it experiences a viscous damping force of 250 N at a velocity of 0.3 m/s. Calculate the periodic time of damped vibration. If the mass is subjected to a periodic disturbing force having a maximum value of 200 N and making 2 cycles per second, find the amplitude of the ultimate motion.	(6)	CO3	PO1, PO2
8.	Explain the working principle of (i) vibrometer and (ii) accelerometer with neat diagrams	(6)	CO3	PO1, PO2
9.	Explain the concept of vibration absorber with a neat diagram and necessary equations.	(6)	CO4	PO1, PO2
10.	Calculate the natural frequency of a shaft of diameter 10 cm and length 300 cm carrying two discs of diameters 125 cm and 200 cm respectively at its ends and weighing 480 kg and 900 kg respectively. Modulus of rigidity of the shaft material may be taken as $1.96 \times 10^{11} \text{ N/m}^2$.	(6)	CO4	PO1, PO2

--- End of Paper ---